数学建模数据处理方法66480PPT课件_第1页
数学建模数据处理方法66480PPT课件_第2页
数学建模数据处理方法66480PPT课件_第3页
数学建模数据处理方法66480PPT课件_第4页
数学建模数据处理方法66480PPT课件_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2020/11/25,1,一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理,2020/11/25,2,二、数据处理的一般方法,1. 数据类型的一致化处理方法,极大型:期望取值越大越好; 极小型:期望取值越小越好; 中间型:期望取值为适当的中间值最好; 区间型:期望取值落在某一个确定的区间 内为最好。,什么是一致化处理?为什么要一致化?,2020/

2、11/25,3,所谓一致化处理就是将评价指标的类型进行统一一般来说,在评价指标体系中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都具有不同的特点如产量、利润、成绩等极大型指标是希望取值越大越好;而成本、费用、缺陷等极小型指标则是希望取值越小越好;对于室内温度、空气湿度等居中型指标是既不期望取值太大,也不期望取值太小,而是居中为好,2020/11/25,4,若指标体系中存在不同类型的指标,必须在综合评价之前将评价指标的类型做一致化处理例如,将各类指标都转化为极大型指标,或极小型指标一般的做法是将非极大型指标转化为极大型指标但是,在不同的指标权重确定方法和评价模型中,指标一

3、致化处理也有差异,2020/11/25,5,二、数据处理的一般方法,1. 数据类型的一致化处理方法,2020/11/25,6,二、数据处理的一般方法,1. 数据类型的一致化处理方法,2020/11/25,7,所谓无量纲化,也称为指标的规范化,是通过数学变换来消除原始指标的单位及其数值数量级影响的过程因此,就有指标的实际值和评价值之分般地,将指标无量纲化处理以后的值称为指标评价值无量纲化过程就是将指标实际值转化为指标评价值的过程,2020/11/25,8,2. 数据指标的无量纲化处理方法,(3)功效系数法:,二、数据处理的一般方法,(1)标准差法:,(2)极值差法:,2020/11/25,9,二

4、、数据处理的一般方法,3. 模糊指标的量化处理方法,在实际中,很多问题都涉及到定性,或模糊指标的定量处理问题。 诸如:教学质量、科研水平、工作政绩、人员素质、各种满意度、信誉、态度、意识、观念、能力等因素有关的政治、社会、人文等领域的问题。,如何对有关问题给出定量分析呢?,2020/11/25,10,按国家的评价标准,评价因素一般分为五个等级,如A,B,C,D,E。 如何将其量化?若A-,B+,C-,D+等又如何合理量化? 根据实际问题,构造模糊隶属函数的量化方法是一种可行有效的方法。,二、数据处理的一般方法,3. 定性指标的量化处理方法,2020/11/25,11,假设有多个评价人对某项因素

5、评价为A,B,C,D,E共5个等级: v1 ,v2 ,v3 ,v4,v5。 譬如:评价人对某事件“满意度”的评价可分为 很满意,满意,较满意,不太满意,很不满意 将其5个等级依次对应为5,4,3,2,1。 这里为连续量化,取偏大型柯西分布和对数函数作为隶属函数:,二、数据处理的一般方法,水泥发泡剂 水泥发泡剂 崇銵莒,2020/11/25,13,二、数据处理的一般方法,3. 定性指标的量化处理方法,2020/11/25,14,二、数据处理的一般方法,3. 定性指标的量化处理方法,根据这个规律,对于任何一个评价值,都可给出一个合适的量化值。 据实际情况可构造其他的隶属函数。如取偏大型正态分布。,2020/11/25,15,三、数据建模的综合评价方法,适用条件:各评价指标之间相互独立。 对不完全独立的情况,其结果将导致各指标间信息的重复,使评价结果不能客观地反映实际。,1. 线性加权综合法,主要特点: (1)各评价指标间作用得到线性补偿; (2)权重系数的对评价结果的影响明显。,2020/11/25,16,2. 非线性加权综合法,三、数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论