FREQUENCY HOPPING FOR ROBUST INDOOR LOCALIZATION IN DAILY ENVIRONMENTS_第1页
FREQUENCY HOPPING FOR ROBUST INDOOR LOCALIZATION IN DAILY ENVIRONMENTS_第2页
FREQUENCY HOPPING FOR ROBUST INDOOR LOCALIZATION IN DAILY ENVIRONMENTS_第3页
FREQUENCY HOPPING FOR ROBUST INDOOR LOCALIZATION IN DAILY ENVIRONMENTS_第4页
FREQUENCY HOPPING FOR ROBUST INDOOR LOCALIZATION IN DAILY ENVIRONMENTS_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Sensor Network for Localization and Its Application in Healthcare,Polly Huang Electrical Engineering National Taiwan University .tw/,1,Road Map,Sensor network? Indoor localization? The system & testbed Technical challenges Causality Study Frequency Hopping Hospital Installation

2、,Sensor Network,Sensors?,Also the biomedical sensors: EMG, EKG, pulses, emotions, etc,camera,mic,accelerometer,gyro,pressure,thermal,GPS,Sensor Nodes Today,MICA, 2001-2002 5.7cm X 3.18cm 4 MHz CPU 128K ROM 512K RAM 40kbps Radio range x00 feet Sensors, battery not included,Embedded Sensor Node,Intel

3、Xscale CPU Analog and digital radio Flash and SRAM memory Sensors,Embedded Sensor Network,Indoor Localization,Localization Systems,Outdoor GPS Indoor UWB, ultrasound, infrared, etc RF-based system,9,Radio as Location Sensor,802.15.4 (Zigbee) radio RF radio Active RFID,Photo courtesy: Crossbow,Beacon

4、,Tag,Signal Strength Propagation Time, Distance,Classic Techniques,Ranging & Triangulation Each radio source to a receiver RSSI distance Radio Fingerprinting A bunch of radio sources to a receiver RSSIs(position_X) RSSIs(position_Y),11,Localization - Triangulation,Infrastructural Beacons,Mobile User

5、s,(x, y, z),(x1, y1, z1),(x2, y2, z2),(x3, y3, z3),(x4, y4, z4),(x5, y5, z5),Requirement,Important property of the electromagnetic wave used Radio time of flight transmitter receiver Proportional to distance transmitter receiver High frequency EM waves, e.g., Infrared Ultrasound Problem Line of sigh

6、t Placement of tags a challenge,Localization Radio Fingerprint,Beacon 4,Beacon 1,Beacon 3,Beacon 2,(B1,B2,B3,B4),Look up the table,Road Map,Sensor network? Indoor localization? The system & testbed Technical challenges Causality Study Frequency Hopping Hospital Installation,1. Survey Phase,Radio Fin

7、gerprints,2. Tracking Phase,RSSI,Radio Fingerprints,Location Estimation,K-Nearest Neighbor(KNN) K=3,18,K closest fingerprints (with minimum Euclidean distance),Output Position,Radio Fingerprints,Tracking : Beacon 1=-70 Beacon 2=-77 ,Weighted Average,Modulator Demodulator,Testbed Deployment,19,PC gat

8、eway + Power supply,USB Hub,Beacon nodes,Training area,USB Extender,Maximum Transmission Distance: Issue I,Power Supply: Issue II,Power Confusion: Issue III,Localization Error,Road Map,Sensor network? Indoor localization? The system & testbed Technical challenges Causality Study Frequency Hopping Ho

9、spital Installation,Antenna Orientation: Experiment I,Average location error: 0.88 m,Average location error: 2.05 m,Average location error: 3.17 m,Antenna Radiation Pattern,On-board antenna,Radiation Pattern,Foreground Obstacle: Experiment II,Tag on chair,Tag in hand,Human wandering around,Human sta

10、nding still,Foreground Obstacle Experimental Result,RSSI of tag on chair: More stable RSSI of tag held in hand: High in variance,Foreground Obstacle Experimental Result,RSSI of tag on chair: More stable RSSI of tag held in hand: High in variance,(a),(b),Foreground Obstacle Experimental Result,RSSI o

11、f tag on chair: More stable RSSI of tag held in hand: High in variance,(a),(b),Average localization error: 12:00AM 7:00AM: 1.58m 9:00 AM 12:00AM: 1.52m,Daytime Midnight,Background Noises: Experiment III,Beacon Density: Experiment IV,1/3 beacons (I),1/3 beacons (II),1/3 beacons (lll),Take Aways,Major

12、 factors: Antenna orientation Foreground obstacles Suggestions: Use of uniform radiation pattern antenna Same antenna orientation in training and tracking The method in training and tracking should be consistent. Denser beacon deployment higher accuracy Not an issue: Background noise,Road Map,Sensor

13、 network? Indoor localization? The system & testbed Technical challenges Causality Study Frequency Hopping Hospital Installation,Radio InterferenceA Common Problem,35,Location estimation,(beacon1, RSSI1) (beacon2, RSSI2) (beacon3, RSSI3) (beacon4, RSSI4) .,Interference,Beacon node 1,Beacon node 2,Be

14、acon node 3,Beacon node4,Interference Localization Error,Implementation Localization Zigbee RSSI-signature Data WiFi Experiments WiFi data rate 68 2835 kbps,36,1.60m,3.85m,Cause: Beacon Packet Loss,37,Problem Statement,Frequency hopping to mitigate the impact of interference on localization accuracy

15、!,38,Longer beacon packet collection time? 1. Location sampling delay 2. Data traffic drop due to interference,Contributions,Quantify the impact of interference Devise a frequency hopping mechanism Evaluate localization stability under realistic influences,39,Done!,Next!,Mechanism Components,How to

16、hop In a relay fashion When to hop A diagnostic test decide whether to hop,40,Hopping Notification,Diagnostic Test,Hop,Timeout,41,Diagnostic Test 3 Parts,Easy part Not-so-easy part Difficult part,42,The Easy Part,Strong evidence Beacon loss Location error Beacon packet loss A good criteria Packet Re

17、ception Rate (PRR) PRR # packets received in T / # packets sent in T 5 packets/sec,43,The Semi-Easy Part,Beacon loss Location error Observed at the mobile tag Need to know PRR from a beacon when theres no interference So mobile tag can tell if PRR is relatively PRR from a beacon Differ depending on

18、Location of mobile tag,44,The Solution,Every beacon node listens to other beacon nodes! At system setup (no interference) Recording PRR from all other beacons Select good neighbor beacons During operation Record PRR from good neighbor beacons Use this PRR to determine whether theres interference,45,

19、The Difficult Part,How bad PRR interference Too low = beacon packet losses Too high = hop unnecessarily,46,Proposed Solutions,1. Thresholding Measure the system for a while Find a proper threshold that minimize error Brute-force search (nave ”) 2. Hidden Markov Model(HMM) Measure the system for a wh

20、ile Train a model based on measured relationship between PRR vs. localization errors More scalable (scientifically sound),47,Why HMM?,Time dependency in background WiFi traffic Quiet Quiet & Busy Busy (Often) Quiet Busy & Busy Quiet (Seldom) Time dependency in PRR Background WiFi Traffic Beacon PRR

21、HMM models temporal pattern in PRR Transition probability,48,transit ,remain ,Quiet,Busy,Data Sets: Real WiFi Usage,49,Localization Errors,1.24m,2.74m,1.32m,1.82m,a slight penalty of receiving no beacon packets during transition of hopping,50,Hopping delay,Loss pattern of hopping message beacon mess

22、age Time for all beacons to hop to the next channel is simulated by beacon PRR,51,No Timeout,Take Aways,RSSI-based localization system sensitive to interference Localization error under interference Degrade by 141% Frequency hopping effective Localization error with frequency hopping Reduced to 45%,52,Road Map,Sensor network? Indoor localization? The system & testbed Technical challenges Causality Study Frequency Hopping Hospital Installation,台大醫院北護分院室內定位系統,54,室內定位系統,甚麼是定位系統? 找出人或物品目前所在的位置 市面上有沒有商品化的定位系統 GPS衛星定位 可是,衛星定位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论