




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数的单调性 一、选择题:1在区间(0,)上不是增函数的函数是( )ay=2x1by=3x21cy=dy=2x2x12函数f(x)=4x2mx5在区间2,上是增函数,在区间(,2)上是减函数,则f(1)等于( )a7b1c17d253函数f(x)在区间(2,3)上是增函数,则y=f(x5)的递增区间是( )a(3,8)b(7,2)c(2,3)d(0,5)4函数f(x)=在区间(2,)上单调递增,则实数a的取值范围是( )a(0,)b( ,)c(2,)d(,1)(1,)5已知函数f(x)在区间a,b上单调,且f(a)f(b)0,则方程f(x)=0在区间a,b内( )a至少有一实根 b至多有一实根
2、 c没有实根 d必有唯一的实根6已知函数f(x)=82xx2,如果g(x)=f( 2x2 ),那么函数g(x)( ) a在区间(1,0)上是减函数 b在区间(0,1)上是减函数 c在区间(2,0)上是增函数 d在区间(0,2)上是增函数7已知函数f(x)是r上的增函数,a(0,1)、b(3,1)是其图象上的两点,那么不等式 |f(x1)|1的解集的补集是( ) a(1,2) b(1,4) c(,1)4,) d(,1)2,)8已知定义域为r的函数f(x)在区间(,5)上单调递减,对任意实数t,都有f(5t)f(5t),那么下列式子一定成立的是( )af(1)f(9)f(13)bf(13)f(9)
3、f(1)cf(9)f(1)f(13)df(13)f(1)f(9)9函数的递增区间依次是( )abcd10已知函数在区间上是减函数,则实数的取值范围是( )aa3 ba3ca5 da311已知f(x)在区间(,)上是增函数,a、br且ab0,则下列不等式中正确的是( )af(a)f(b)f(a)f(b)bf(a)f(b)f(a)f(b)cf(a)f(b)f(a)f(b)df(a)f(b)f(a)f(b)12定义在r上的函数y=f(x)在(,2)上是增函数,且y=f(x2)图象的对称轴是x=0,则( )af(1)f(3)bf (0)f(3) cf (1)=f (3) df(2)f(3)二、填空题:
4、13函数y=(x1)-2的减区间是_ _14函数y=x22的值域为_ _15、设是上的减函数,则的单调递减区间为 .16、函数f(x) = ax24(a1)x3在2,上递减,则a的取值范围是_ 三、解答题:17f(x)是定义在( 0,)上的增函数,且f() = f(x)f(y) (1)求f(1)的值 (2)若f(6)= 1,解不等式 f( x3 )f() 2 18函数f(x)=x31在r上是否具有单调性?如果具有单调性,它在r上是增函数还是减函数?试证明你的结论19试讨论函数f(x)=在区间1,1上的单调性20设函数f(x)=ax,(a0),试确定:当a取什么值时,函数f(x)在0,)上为单调
5、函数21已知f(x)是定义在(2,2)上的减函数,并且f(m1)f(12m)0,求实数m的取值范围 22已知函数f(x)=,x1,(1)当a=时,求函数f(x)的最小值;(2)若对任意x1,f(x)0恒成立,试求实数a的取值范围参考答案一、选择题: cdbbd adcca ba二、填空题:13. (1,), 14. (,3),15., 三、解答题:17.解析:在等式中,则f(1)=0在等式中令x=36,y=6则 故原不等式为:即fx(x3)f(36),又f(x)在(0,)上为增函数,故不等式等价于:18.解析: f(x)在r上具有单调性,且是单调减函数,证明如下:设x1、x2(,), x1x2
6、 ,则f(x1)=x131, f(x2)=x231f(x1)f(x2)=x23x13=(x2x1)(x12x1x2x22)=(x2x1)(x1)2x22x1x2,x2x10而(x1)2x220,f(x1)f(x2)函数f(x)=x31在(,)上是减函数19.解析: 设x1、x21,1且x1x2,即1x1x21f(x1)f(x2)=x2x10,0,当x10,x20时,x1x20,那么f(x1)f(x2)当x10,x20时,x1x20,那么f(x1)f(x2)故f(x)=在区间1,0上是增函数,f(x)=在区间0,1上是减函数20.解析:任取x1、x20,且x1x2,则f(x1)f(x2)=a(x
7、1x2)=a(x1x2)=(x1x2)(a)(1)当a1时,1,又x1x20,f(x1)f(x2)0,即f(x1)f(x2)a1时,函数f(x)在区间0,)上为减函数(2)当0a1时,在区间0,上存在x1=0,x2=,满足f(x1)=f(x2)=10a1时,f(x)在,上不是单调函数注: 判断单调性常规思路为定义法;变形过程中1利用了|x1|x1;x2;从a的范围看还须讨论0a1时f(x)的单调性,这也是数学严谨性的体现 21.解析: f(x)在(2,2)上是减函数由f(m1)f(12m)0,得f(m1)f(12m) 解得,m的取值范围是()22.解析: (1)当a=时,f(x)=x2,x1,)设x2x11,则f(x2)f(x1)=x2=(x2x1)=(x2x1)(1)x2x11,x2x10,10,则f(x2)f(x1)可知f(x)在1,)上是增函数f(x)在区间1,上的最小值为f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 力量训练计划解读课件
- 班主任在班级文化建设中的角色计划
- 优化工作流程的年度计划
- 应对市场变化的管理策略计划
- 如何通过合作提升品牌知名度计划
- 探索数字化工具提升工作效率计划
- 仓库管理软件的应用总结计划
- 实施生物实验室开放日活动计划
- 定期工作总结与自我评估计划
- 2024年酒店业绩提升策略试题及答案
- 《农业区位因素及其变化》(第二课时)
- 史上最牛的民族-犹太人课件
- 《全科医学概论》第4章课件
- 车间粉尘清扫记录表
- 五年级上册心理健康教育课件-体验成功的快乐(共10张PPT)全国通用
- 膝关节置换术查房课件
- 法理学-(第五版)完整版ppt全套教学教程课件(最新)
- 旅行管家实务全套ppt课件最全电子教案完整版教学教程整套全书课件ppt
- 三年级下册数学课件-4.1 整体与部分 ▏沪教版 13张
- 税务稽查管理-税务稽查实施
- 变更税务登记表doc-变更税务登记表
评论
0/150
提交评论