2012年高考数学二轮复习精品资料-专题12数学思想方法(教师版)_第1页
2012年高考数学二轮复习精品资料-专题12数学思想方法(教师版)_第2页
2012年高考数学二轮复习精品资料-专题12数学思想方法(教师版)_第3页
2012年高考数学二轮复习精品资料-专题12数学思想方法(教师版)_第4页
2012年高考数学二轮复习精品资料-专题12数学思想方法(教师版)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2012年高考数学二轮复习精品资-专题12(教师版)【考纲解读】1.熟练掌握函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.2.能够对所学知识进行分类或归纳,能应用数学思想方法分析和解决问题,系统地把握知识间的内在联系.【考点预测】1.函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点,也是高考的一个热点。对函数试题的设计仍然会围绕几个基本初等函数和函数的性质、图象、应用考查函数知识;与方程、不等式、解析几何等内容相结合,考查函数知识的综合应用;在函数知识考查的同时,加强对函数方程、分类讨论、数形结合、等价转化等数学思想方法的考查。2.预测在今年的高考中,数形结合与分类讨论思想仍是考查的一个热点,数形结合的考查方式常以数学式、数学概念的几何意义、函数图象、解析几何等为载体综合考查,分类讨论思想的考查重点为含有参数的函数性质问题、与等比数列的前n项和有关的计算推证问题、直线与圆锥曲线的位置关系不定问题等。3.预测在今年的高考中,运用化归与转化思想解题的途径主要有:借助函数、方程(组)、辅助命题、等价变换、特殊的式与数的结构、几何特征进行转化,其方法有:正反转化、数形转化、语义转化、等与不等、抽象问题与具体问题化归,一般问题与特殊问题化归,正向思维与逆向思维化归。【要点梳理】1.函数与方程思想:我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。2.数形结合的思想:是解答高考数学试题的一种常用方法与技巧,特别是在解选择与填空题时发挥着奇特功效.具体操作时,应注意以下几点:(1)准确画图,注意函数的定义域;(2)用图象法讨论方程的解的个数.3与分类讨论有关的知识点有:直线的斜率分为存在和不存在两种情形、等比数列中的公比和、由参数的变化引起的分类讨论、由图形的不确定性引起的分类讨论、指对函数的底数分为和两种情形等。分类的原则是:不重复、不遗漏、分层次讨论。分类讨论的一般流程是:明确讨论的对象、选择分类的标准、逐类进行讨论、归纳整合。4转化与化归常用的方法有:直接转化法、换元法、数形结合法、构造法、坐标法、类比法、特殊化方法等。 【考点在线】考点一 函数与方程思想函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f(x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。例1. (2011年高考江苏卷8)在平面直角坐标系中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是_.【答案】4【解析】设坐标原点的直线方程为,则由解得交点坐标为、,即为P、Q两点,所以线段PQ长为,当且仅当时等号成立,故线段PQ长的最小值是4.【名师点睛】本小题考察函数与方程,两点间距离公式以及基本不等式,中档题.【备考提示】:正确理解函数与方程思想是解答好本类题的关键.练习1: (2011年高考山东卷理科16)已知函数=当2a3b4时,函数的零点 .【答案】2【解析】方程=0的根为,即函数的图象与函数的交点横坐标为,且,结合图象,因为当时,此时对应直线上的点的横坐标;当时, 对数函数的图象上点的横坐标,直线的图象上点的横坐标,故所求的.考点二 数形结合思想 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。例2. 若方程lg(x3xm)lg(3x)在x(0,3)内有唯一解,求实数m的取值范围。【解析】 原方程变形为 ,即:,设曲线y(x2) , x(0,3)和直线y1m,图像如图所示.由图可知: 当1m0时,有唯一解,m1; 当11m4时,有唯一解,即3m0, m1或3m0此题也可设曲线y(x2)1 , x(0,3)和直线ym后画出图像求解。【名师点睛】将对数方程进行等价变形,转化为一元二次方程在某个范围内有实解的问题,再利用二次函数的图像进行解决.【备考提示】:一般地,方程的解、不等式的解集、函数的性质等进行讨论时,可以借助于函数的图像直观解决,简单明了。此题也可用代数方法来讨论方程的解的情况,还可用分离参数法来求(也注意结合图像分析只一个x值).练习2:(2011年高考北京卷理科13)已知函数若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是_ _.【答案】(0,1)【解析】画出函数图象与直线y=k,观察,可得结果.考点三 分类讨论思想例3. (2011年高考全国新课标卷理科21)已知函数,曲线在点处的切线方程为。()求、的值;()如果当,且时,求的取值范围.【解析】(),由题意知:即()由()知,所以,设则,如果,由知,当时, ,而故,由当得:从而,当时,即如果,则当,时,而;得:与题设矛盾;如果,那么,因为而,时,由得:与题设矛盾; 综合以上情况可得:.【名师点睛】本题综合考察导数的概念、性质、求导法则、导数的应用、分类讨论等概念、性质、方法和思想, 特别是第(2)问通过构造新函数,用导数判定单调性,通过分类讨论确定参数的取值范围,要深入理解和把握并进行拓展.【备考提示】:分类讨论思想是高考的热点,年年必考,深刻领会分类讨论的思想是解决好本类题目的关键.练习3:(2011年高考湖南卷理科22第(1)问)已知函数求函数的零点个数,并说明理由;【解析】由知,而且,则为的一个零点,且在内由零点,因此至少有两个零点.记则当时,因此在上单调递增,则在上至多有一个零点,又因为,则在内有零点.所以在上有且只有一个零点,记此零点为,则当时,当时,所以,当时,单调递减,而则在内无零点;当时,单调递增,则在内至多只有一个零点,从而在上至多有一个零点.综上所述,有且只有两个零点.考点四 转化与化归的思想等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。在数学操作中实施转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力.例4. 若x、y、zR且xyz1,求(1)( 1)( 1)的最小值。【解析】(1)( 1)( 1)(1x)(1y)(1z)(1xyzxyyzzxxyz)(xyyzzxxyz)131119【名师点睛】对所求式进行等价变换:先通分,再整理分子,最后拆分。将问题转化为求的最小值,则不难由平均值不等式而进行解决.本题的关键是将所求式进行合理的变形,即等价转化,此题属于代数恒等变形题型,即代数式在形变中保持值不变.【备考提示】:熟练转化与化归的思想是解答好本题的关键.练习4.已知三棱锥S-ABC的三条侧棱两两垂直,SA5,SB4,SC3,D为AB的中点,E为AC的中点,则四棱锥S-BCED的体积为_。A. B. 10 C. D. 【答案】A【解析】由SS和三棱椎的等体积转化容易求.【易错专区】问题:分类讨论例.已知集合A=x|x23x2=0,B=x|x2x1=0,且AB=A,则的值为_【解析】 AB=A, A=1,2, B=或B=1或B=2或B=1,2若B=,则令0得R且2,把x=1代入方程得R,把x=2代入方程得=3综上的值为2或3【名师点睛】:本题讨论时,要考虑到集合B有可能是空集,还有可能是单元素集的情况【备考提示】:分类讨论是高考的一个热点,在二轮复习时,要有意识地去应用,注意问题点.【考题回放】1.(2011年高考广东卷文科2)已知集合为实数,且,为实数,且,则的元素个数为( )A4B3C2D1【答案】C【解析】方法一:由题得,所以选C.方法二:直接作出单位圆和直线,观察得两曲线有两个交点,故选C.2.(2011年高考湖南卷文科1)设全集则( )A B 【答案】B【解析】画出韦恩图,可知.3.(2011年高考全国卷理科7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有( )(A)4种 (B)10种 (C)18种 (D)20种【答案】B【解析】:选画册2本,集邮册2本,共有赠送方法,选画册1本,集邮册3本,共有赠送方法,故共有赠送方法4+6=10种,故选B.4. (2011年高考天津卷理科8)对实数与,定义新运算“”: 设函数若函数的图像与轴恰有两个公共点,则实数的取值范围是( )A B C D.【答案】B【解析】由题意知,若,即时, ;当,即或时, ,要使函数的图像与轴恰有两个公共点,只须方程有两个不相等的实数根即可,即函数的图像与直线有两个不同的交点即可,画出函数的图像与直线,不难得出答案B.5.(2011年高考江苏卷14)设集合, , 若 则实数m的取值范围是_【答案】6. (2011年高考天津卷理科20)已知数列与满足:, ,且()求的值;()设,证明:是等比数列;()设证明:【解析】本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析能力和解决问题的能力及分类讨论的思想方法.()解:由,可得, 又当n=1时,由,得;当n=2时,可得.当n=3时,可得.()证明:对任意,-得 ,将代入,可得即(),又,故,因此,所以是等比数列.(III)证明:由(II)可得,于是,对任意,有将以上各式相加,得即,此式当k=1时也成立.由式得从而所以,对任意,对于n=1,不等式显然成立.所以,对任意7.(2011年高考安徽卷理科20)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.()如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?()若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);()假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。【命题意图】:本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列,均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类讨论思想,应用意识与创新意识。【解析】:()无论怎样的顺序派出人员,任务不能被完成的概率都是,所以任务能被完成的概率为=()当依次派出的三个人各自完成任务的概率分别为时,所需派出人员数目的分布列为123P所需派出人员数目的均值(数字期望)是()(方法一)由()如果按甲在先,乙次之,丙最后的顺序派人时,所需派出人员数目的均值(数字期望)是 按常理,优先派完成任务概率大的人,可减少所需派出人员的数目的均值。 下面证明:对于的任意组合,都有 () 事实上= = = = ,所以()式成立。 (方法二)(i)可将()中改写为,若交换前两人的顺序,则变为,由此可见,当时,交换前两人的顺序可减少所需派出人员的数目的均值。(ii)也可将()中改写为,若交换后两人的顺序则变为,由此可见,保持第一个人不变,当时,交换后两人的顺序可减少所需派出人员的数目的均值。组合(i)(ii)可知,当时达到最小,即优先派完成任务概率大的人,可减少所需派出人员的数目的均值,这一结论也合乎常理。【高考冲策演练】一、选择题:1(2011年高考辽宁卷文科1)已知集合A=x,B=x,则AB=( ) (A) x (B)x (C)x (D)x【答案】D【解析】利用数轴可以得到AB=x.2.如果实数x、y满足等式(x2)y3,那么的最大值是( )A. B. C. D. 【答案】D【解析】转化为圆上动点与原点连线的斜率范围问题.3(2010年高考山东卷理科11)函数y=2x -的图像大致是( )【答案】A【解析】因为当x=2或4时,2x -=0,所以排除B、C;当x=-2时,2x -=,故排除D,所以选A。4(2010年高考福建卷理科4)函数的零点个数为 ( )A.0 B.1 C.2 D.3【答案】C【解析】当时,令解得;当时,令解得,所以已知函数有两个零点,选C。5.(2010年高考天津卷理科2)函数的零点所在的一个区间是( )(A)(-2,-1) (B)(-1,0) (C)(0,1) (D)(1,2)【答案】B【解析】因为,所以选B。6(2010年高考天津卷理科8)设函数f(x)= 若f(a)f(-a),则实数a的取值范围是( )(A)(-1,0)(0,1) (B)(-,-1)(1,+) (C)(-1,0)(1,+) (D)(-,-1)(0,1)【答案】C【解析】当时,由f(a)f(-a)得:,即,即,解得;当时,由f(a)f(-a)得:,即,即,解得,故选C。7( 2010年高考全国卷I理科2)记,那么( )A. B. - C. D. -【答案】B 【解析】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.,所以8. (2010年高考湖北卷理科5)已知和点满足.若存在实数使得成立,则=( )A 2 B. 3 C. 4 D. 5【答案】B【解析】由知,点M为的重心,设点D为底边BC的中点,则=,所以有,故=3,选B.9( 2010年高考全国卷I理科7)正方体ABCD-中,B与平面AC所成角的余弦值为( )A B C D【答案】D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面AC的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析】因为BB1/DD1,所以B与平面AC所成角和DD1与平面AC所成角相等,设DO平面AC,由等体积法得,即.设DD1=a,则,.所以,记DD1与平面AC所成角为,则,所以.10(2010年高考数学湖北卷理科9)若直线与曲线有公共点,则的取值范围是( ) A B. C. D. 【答案】C【解析】曲线方程可化简为,即表示圆心为(2,3)半径为2的半圆,依据数形结合,当直线与此半圆相切时须满足圆心(2,3)到直线y=x+b距离等于2,解得,因为是下半圆故可得(舍),当直线过(0,3)时,解得b=3,故所以C正确.11(2010年高考上海市理科17)若是方程的解,则属于区间( )(A)(,1) (B)(,) (C)(,) (D)(0,)【答案】C12. (2010年高考天津卷理科9)设集合A,B。若,则实数必满足( )(A) (B)(C) (D)【答案】D【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论