已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二年级调研测试数学(理科)一、填空题:本大题共14小题,每小题5分,共计70分.不需写出解题过程,请把答案直接填写在答题卡相应位置上.1. 已知复数z(m1)(m2)i是纯虚数(i为虚数单位),则实数m的值为_【答案】-1.【解析】分析:由复数的实部等于0且虚部不等于0列式求解m的值.详解:由复数是纯虚数,得,解得.故答案为:-1.点睛:本题考查了复数的基本概念,考查了复数是纯虚数的条件.2. 已知点,则_【答案】5【解析】分析:运用向量坐标的求法以及向量的模长公式即可.详解:点, ,.故答案为:5.点睛:向量的坐标运算主要是利用加、减、数乘运算法则进行若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则3. 若,则的值为_【答案】4或9【解析】分析:根据组合数公式的性质,得到关于x的方程解得即可.详解:由组合数公式的性质,可得或,解得或.故答案为:4或9.点睛:本题主要考查了组合数公式的性质.4. 已知随机变量服从二项分布,那么方差的值为_【答案】【解析】分析:随机变量服从二项分布,那么,即可求得答案.详解:随机变量服从二项分布,那么,即.故答案为:.点睛:求随机变量X的均值与方差时,可首先分析X是否服从二项分布,如果XB(n,p),则用公式E(X)np;D(X)np(1p)求解,可大大减少计算量5. 三个同学猜同一个谜语,如果每人猜对的概率都是,并且各人猜对与否相互独立,那么他们同时猜对的概率为_【答案】【解析】分析:直接求即可.详解:三个同学猜同一个谜语,如果每人猜对的概率都是,故他们同时猜对的概率是.故答案为:.点睛:本题主要考查相互独立事件的概率乘法公式.6. 已知矩阵,则矩阵的逆矩阵为_【答案】【解析】分析:直接计算即可.详解:矩阵,矩阵的逆矩阵.故答案为:.点睛:本题考查了逆矩阵,注意解题方法的积累.7. 若从4名男生和3名女生中任选2人参加演讲比赛,则至少选出1名女生的概率为_(结果用分数表示)【答案】.详解:从4名男生和3名女生中任选2人参加演讲比赛,则所有可能结果共有种,设事件A“所选2人都是男生”,则A事件“所选2人都是男生”包含的基本事件个数有种, ,故至少选出1名女生的概率为.故答案为:.点睛:本题考查概率的求法,解题时要认真审题,注意等可能事件概率计算公式、对立事件概率计算公式的合理运用.8. 在极坐标系中,已知到直线:,的距离为2,则实数的值为_【答案】1【解析】分析:可化为,利用点到直线:,的距离为2,求出m的值.详解:可化为,点到直线:,的距离为2,又 ,.故答案为:1.点睛:求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标9. 设向量,且,则的值为_【答案】168【解析】分析:因为,我们可以设,然后根据数乘向量相等的充要条件,我们可以构造方程组,解方程组,再利用向量数量积的坐标运算即可得到答案.详解: ,设,又 ,即,解得, .故.故答案为:168.点睛:本题考查的知识点是向量平行的充要条件,根据向量平行的充要条件构造方程组是解决此类问题的关键,同时考查了向量数量积的坐标运算.10. 圆:在矩阵对应的变换作用下得到了曲线,曲线的矩阵对应的变换作用下得到了曲线,则曲线的方程为_【答案】【解析】分析:详解:,设为曲线上任意一点,是圆:上与P对应的点,得,是圆上的点, 的方程为,即.故答案为:.点睛:本题考查了几种特殊的矩阵变换,体现了方程的数学思想.11. 若的二项展开式中的第3项的二项式系数为15,则的展开式中含项的系数为_【答案】160【解析】分析:根据题意,结合二项式定理可得,再利用二项式通项公式即可.详解:由二项式定理,的二项展开式中的第3项的二项式系数为,有,解得.则有,当时,得, 的展开式中含项的系数为160.故答案为:160.点睛:本题考查二项式系数的性质,要注意区分某一项的系数与某一项的二项式系数的区别.12. 将4个不同的小球放入编号为1,2,3,4的4个盒子中,恰有2个空盒的方法共有_种(用数字作答)【答案】84【解析】分析:先选两个空盒子,再把4个小球分为,两组,分到其余两个盒子里,即可得到答案.详解:先选两个空盒子,再把4个小球分为,两组,故有.故答案为:84.点睛:本题考查的是排列、组合的实际应用,考查了计数原理,注意这种有条件的排列要分两步走,先选元素再排列.13. 对于自然数方幂和 ,求和方法如下:,将上面各式左右两边分别相加,就会有,解得,类比以上过程可以求得,且与无关,则的值为_【答案】.【解析】分析:利用类比法先求出,再求,从而得到答案.详解:利用类比法:,将上面各式左右两边分别相加,就会有,解得;继续使用类比法:,将上面各式左右两边分别相加,就会有,解得, .故答案为:.点睛:类比推理应用的类型及相应方法类比推理的应用一般为类比定义、类比性质和类比方法(1)类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;(2)类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;(3)类比方法:有一些处理问题的方法具有类比性,可以把这种方法类比应用到其他问题的求解中,注意知识的迁移14. 化简 _【答案】【解析】分析:利用二项式逆定理即可.详解: (展开式实部)(展开式实部).故答案为:.点睛:本题考查二项式定理的逆应用,考查推理论证能力.二、解答题:本大题共6小题,15-17题每题14分,18-20题每题16分,共计90分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤.15. 已知复数,i为虚数单位(1)求;(2)若复数z满足,求的最大值【答案】(1) (2) .【解析】分析:(1)化简复数即可;(2)设,则则复数对应点的轨迹是以为圆心,2为半径的圆,复数对应点,所以即可先求点到圆心的距离再减去半径即可.详解:(1) (2)设,因为,所以 在复平面中,复数对应点,复数对应点的轨迹是以为圆心,2为半径的圆;因为AO=,所以的最大值为点睛:与复数几何意义、模有关的解题技巧(1)只要把复数zabi(a,bR)与向量对应起来,就可以根据平面向量的知识理解复数的模、加法、减法的几何意义,并根据这些几何意义解决问题(2)有关模的运算要注意灵活运用模的运算性质16. 已知极坐标系的极点与直角坐标系的原点O重合,极轴与x轴的正半轴重合,若直线l的参数方程:(t为参数),曲线C的极坐标方程为:(1)求直线l的普通方程和曲线C的直角坐标方程;(2)求直线l被曲线C截得线段的长【答案】(1) ;.(2) .【解析】分析:(1)直线的参数方程为:(为参数),消去参数t即可;曲线的极坐标方程为:,利用互化公式即可;(2)几何法求弦长即可.详解:(1)直线的普通方程为,曲线的普通方程为;(2)曲线表示以为圆心,2为半径的圆,圆心到直线的距离,故直线被曲线截得的线段长为点睛:求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标17. 已知矩阵,向量.(1)求的特征值、和特征向量、;(2)求的值.【答案】(1) 当时,解得,当时,解得;(2)见解析.【解析】分析:(1)先根据特征值的定义列出特征多项式,令解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量;(2)根据矩阵A的特征多项式求出矩阵A的所有特征值为3和-1,然后根据特征向量线性表示出向量,利用矩阵的乘法法则求出,从而即可求出答案.详解(1)矩阵的特征多项式为,令,解得, 当时,解得;当时,解得. (2)令,得,求得. 所以 点睛:考查学生会利用二阶矩阵的乘法法则进行运算,会求矩阵的特征值和特征向量.18. 如图,在正四棱柱中,建立如图所示的空间直角坐标系.(1)若,求异面直线与所成角的大小;(2)若,求直线与平面所成角的正弦值;(3)若二面角的大小为,求实数的值.【答案】(1)异面直线与所成角为;(2)与平面所成角的正弦值为;(3)二面角的大小为,的值为.【解析】分析:(1)由题意可得和的坐标,可得夹角的余弦值;(2)求出平面的法向量,即可求出答案;(3)设,表示出平面的法向量和平面的法向量,利用二面角的大小为,即可求出t.详解:(1)当时,则, 故,所以异面直线与所成角为 (2)当时,则, 设平面的法向量,则由得,不妨取,则, 此时, 设与平面所成角为,因为,则,所以与平面所成角的正弦值为 (3)由得, 设平面的法向量,则由得,不妨取,则, 此时,又平面的法向量,故,解得, 由图形得二面角大于,所以符合题意所以二面角的大小为,的值为点睛:本题考查空间向量的数量积和模长公式.19. 假设某士兵远程射击一个易爆目标,射击一次击中目标的概率为,三次射中目标或连续两次射中目标,该目标爆炸,停止射击,否则就一直独立地射击至子弹用完现有5发子弹,设耗用子弹数为随机变量X(1)若该士兵射击两次,求至少射中一次目标的概率;(2)求随机变量X的概率分布与数学期望E(X)【答案】(1) .(2)分布列见解析,.【解析】分析:(1)利用对立事件即可求出答案;(2)耗用子弹数的所有可能取值为2,3,4,5,分别求出相应的概率即可.详解:(1)该士兵射击两次,至少射中一次目标的概率为.(2)耗用子弹数的所有可能取值为2,3,4,5.当时,表示射击两次,且连续击中目标,; 当时,表示射击三次,第一次未击中目标,且第二次和第三次连续击中目标,; 当时,表示射击四次,第二次未击中目标,且第三次和第四次连续击中目标,; 当时,表示射击五次,均未击中目标,或只击中一次目标,或击中两次目标前四次击中不连续两次或前四次击中一次且第五次击中,或击中三次第五次击中且前四次无连续击中。;随机变量的数学期望.点睛:本题考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题.20. 设 ,其中,与无关.(1)若,求的值;(2)试用关于的代数式表示:;(3)设,试比较与的大小.【答案】(1) ;(2) ;(3).【解析】分析:(1)由,即可求出p;(2)当时,两边同乘以,再等式两边对求导,最后令即可;(3)猜测:,利用数学归纳法证明.详解:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第5单元 走向近代(高频选择题50题)(原卷版)
- 八年级下册期末考试模拟卷01(答案及解析)
- 2024年婚姻年度总结
- 《家庭装修销售》课件
- 班级动态管理与调整策略计划
- 话务员旅游服务行业客服
- 深度探索莎翁人性
- 大学生产实习报告四篇
- 安全防范工程师的职责和任务描述
- 销售提成方案范文集锦7篇
- 铁路工程-轨道工程施工工艺及方案
- 福建省福州市各县区乡镇行政村村庄村名明细及行政区划代码
- 《高中语文文言断句》一等奖优秀课件
- 上海市中小学生学籍信息管理系统
- (完整版)自动感应门施工方案
- [QC成果]提高剪力墙施工质量一次合格率
- 8站小车呼叫的plc控制
- _ 基本粒子与宏观物体内在联系
- 象棋比赛积分编排表
- 小学赣美版六年级美术上册第二十课向往和平课件(16张)ppt课件
- DPP4抑制剂比较篇PPT课件
评论
0/150
提交评论