贵州贵阳高三数学摸底考试文PDF_第1页
贵州贵阳高三数学摸底考试文PDF_第2页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

卢焕帮 1 贵阳市普通高中 2020 届高三年级 8 月摸底考试 文文 科科 数数 学学 2019.08.22 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,满分 150 分。考试时间为 120 分钟。 注意事项: 1.答卷前, 考生务必将自己的姓名、 报考号、 座位号用钢笔填在答题卡相应的位置上。 2.回答第 I 卷时,选出每小题答案后,用铅笔将答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮撒干净后,再选涂其它答案标号。写在本试卷上无效。 3.回答第 II 卷时,将答案写在答题卡上,写在本试卷上无效。 第第 I 卷(选择题卷(选择题 共共 60 分)分) 一、一、选择题选择题:本大题共本大题共 12 小题小题,每小题每小题 5 分分,在每小题给出的四个选项中在每小题给出的四个选项中,只有一项是符只有一项是符 合题目要求的。合题目要求的。 1. 已知函数 xxf1lg的定义域为M,函数 x xg 1 的定义域为N,则NM A.1|xxB.01|xxx且 C.1|xxD.01|xxx且 2. 若复数 i i z 1 2 (i是虚数单位) ,则z的共轭复数 z A.i1B.i1C.i1D.i1 3. 三世纪中期,魏晋时期的数学家刘徽利用不断倍增圆 内接正多边形边数的方法求出圆周率的近似值,首创“割 圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后 两位的近似值14. 3,这就是著名的“徽率”.如图是利用刘 徽的“割圆术”思想设计的程序框图,则输出的n值为 (参考数据:1305. 05 . 7sin ,2588. 015sin ) A.6B.12 C.24D.48 卢焕帮 2 4. 已知实数x,y满足约束条件 1 4 2 yx yx y ,则yxz 3的最小值为 A.11B.12C.8D.3 5. 已知角的顶点与原点O重合, 始边与x轴的非负半轴重合, 它的终边过点 5 4 , 5 3 P, 则sin A. 5 4 B. 5 4 C. 5 3 D. 5 3 6. 若l,m是两条不重合的直线,m垂直于平面,则“/l”是“ml ”的 A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件 7. 将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为 A.B. C.D. 8. 某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,则他等待的时间不多 于 15 分钟的概率为 A. 3 1 B. 4 1 C. 5 1 D. 6 1 9. 设 3 . 0 6 . 0a, 6 . 0 3 . 0b, 3 . 0 3 . 0c,则a, ,c的大小关系为 A.cabB.bcaC.acbD.abc 10. 等比数列 n a各项为正数,且18 7465 aaaa,则 1032313 logloglogaaa A.12B.10C.8 D.5log2 3 11. 已知抛物线xy4 2 上一点P到准线的距离为 1 d,到直线01134: yxl的距离为 2 d,则 21 dd 的最小值为 卢焕帮 3 A.3B.4 C.5D.7 12. 定义 n i i u n 1 为n个正数 n uuuu, 321 的“快乐数”。若已知正项数列 n a的前n项的额 “快乐数”为 13 1 n ,则数列 22 36 1nn aa 的前 2019 项和为 A. 2019 2018 B. 2020 2019 C. 2018 2019 D. 1010 2019 第第 II 卷(非选择题卷(非选择题 共共 90 分)分) 本卷包括必考题和选考题两部分。第 13 题第 21 题为必考题,每个试题考生都必须作 答,第 22、23 题为选考题,考生根据要求作答。 二、二、填空题:本大题共填空题:本大题共 4 小题,每小题小题,每小题 5 分。分。 13. 已知向量ma, 1 ,2, 3 b,且 bba,则m. 14. 某大学为了解在校本科生对参加某项社会实践活动意向,拟采用分层抽样的方法,从该 校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三 年级、 四年级的本科生人数之比为6:5:5:4, 则应从一年级本科生中抽取名学生. 15. 数式 1 1 1 1 1中省略号“”代表无限重复,但该式是一个固定值,可以用如下方法 求得:令原式t,则t t 1 1,则01 2 tt,取正值得 2 15 t.用类似方法可得 121212. 16. 圆心在直线xy2上,并且经过点1 , 2A,与直线1 yx相切的圆C的方程 是. 三、三、解答题:解答应写出文字说明,证明过程或验算步骤。解答题:解答应写出文字说明,证明过程或验算步骤。 17. (本小题满分 10 分) ABC的内角CBA,的对边分别为cba,,已知AcCaBbcoscoscos2. (1)求B的大小; (2)若2b,求ABC面积的最大值. 卢焕帮 4 18. (本小题满分 12 分) 2013 年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由 2012 年 底的%2 .10下降到 2018 年底的%4 . 1,创造了人类减贫史上的的中国奇迹。“贫困发生率” 是指低于贫困线的人口占全体人口的比例, 2012年至2018年我国贫困发生率的数据如下表: 年份(t)2012201320142015201620172018 贫困发生率y(%)10.28.57.25.74.53.11.4 (1)从表中所给的 7 个贫困发生率数据中心任选两个,求两个都低于%5的概率; (2)设年份代码2015 tx, 利用线性回归方程, 分析 2012 年至 2018 年贫困发生率y与 年份代码x的相关情况,并预测 2019 年贫困发生率. 附:回归直线 axby的斜率和截距的最小二乘估计公式分别为: n i i n i ii n i i n i ii xnx yxnyx xx yyxx b 1 2 2 1 1 2 1 , xbya( b的值保留到小数点后三位.) 19. (本小题满分 12 分) 如图,在四棱锥ABCDP中,底面ABCD是菱形,PDPA , 60DAB. (1)证明:PBAD . (2)若6PB,2 PAAB,求三棱锥BCDP的体积. 卢焕帮 5 20. (本小题满分 12 分) 已知椭圆C的中心在原点,一个焦点为0 , 3 1 F,且C经过点 2 1 , 3P. (1)求C的方程; (2)设C与y轴的正半轴交于点D, 直线mkxyl:与C交于A、B两点 (l不经过D 点) ,且BDAD .证明:直线l经过定点,并求出该定点的坐标. 21. (本小题满分 12 分) 已知 2 1axxexf x (e为自然对数的底数). (1)若0a,求 xf的单调区间; (2)若当0x时, 0xf,求实数a的取值范围. 请考生在第请考生在第 22、23 题中任选一题作答题中任选一题作答,如果多做如果多做,则按所做的第一题记分则按所做的第一题记分。作答时作答时用用 2B 铅笔在答题卡上铅笔在答题卡上 把题目对应题号的方框涂黑。把题目对应题号的方框涂黑。 22. (本小题满分 10 分)选修 4-4:极坐标与参数方程 已知直线l的参数方程为 ty tx 2 1 2 3 2 1 (t为参数) ,以坐标原点为极点,x轴的正半轴为 极轴建立极坐标系,曲线C的极坐标方程为cos2. (1)求直线l的普通方程和曲线C的直角坐标方程; (2)设点 0 , 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论