




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,数学物理方程与特殊函数,数学与物理的关系,数理不分家,数学物理方程:,数学物理方程(简称数理方程)是指自然科学和工程技术的各门分支学科中出现的一些偏微分方程(有时也包括积分方程、微分方程等),它们反映了物理量关于时间的导数和关于空间变量的导数之间的制约关系。例如声学、流体力学、电磁学、量子力学等等方面的基本方程都属于数学物理方程的研究对象。,用数学方程来描述一定的物理现象,特殊函数,在求解某些类型的数理方程时,采用分离变量法所得到的方程的解是某种特殊函数,例如贝塞尔(Bessel)函数、勒让德(Legendre)函数等。其中有些特殊函数我们在“微积分”课程中已经学习并且研究过其性质。在本课程中,我们只讨论它们在数理方程中的应用问题。,.,课程的内容:,三类方程、四种求解方法、二个特殊函数,分离变量法、行波法、积分变换法、格林函数法,波动方程、热传导传导、拉普拉斯方程,贝赛尔函数、勒让德函数,参考书目:,*数学物理方法,梁昆淼著,人民教育出版社*数学物理方法,邵惠民著,科学出版社*数学物理方程,戴嘉尊著,东南大学出版社,.,数学物理方程发展历史简介,偏微分方程诞生于18世纪,19、20世纪是其迅速发展时期:,17世纪微积分产生后,人们开始把力学中的一些问题和规律归结为偏微分方程进行研究。1747年,法国数学家、物理学家达朗贝尔将弦振动问题归结为如下形式的偏微分方程并探讨了它的解法:,(弦振动方程),(波动方程),1752年欧拉在论文中首先出现位势方程,后来因为拉普拉斯(Laplace)的出色工作,称为Laplace方程:,(Laplace方程),(位势(Possion)方程),.,19世纪打开偏微分方程研究热烈局面的第一人是傅立叶(Fourier),当时工业上要研究金属冶炼和热处理,迫切需要确定物体内部各点的温度如何随时间变化。Fourier对这种热流动问题颇感兴趣,1807年向巴黎科学院提交用数学研究热传导的论文并创立了分离变量法:,(热传导方程),.,一、基本方程的建立,第一章一些典型方程和定解条件的推导,二、定解条件的推导,三、定解问题的概念,.,一、基本方程的建立,例1、均匀弦的微小横振动,假设有一根均匀柔软的细弦,平衡时沿直线方向拉紧,只受弦本身的张力和重力影响。如下图所示,我们研究弦作微小横向运动时,弦上各点的运动规律。,.,简化假设:,(1)柔软:弦上的任意一点的张力沿弦的切线方向;细:与张力相比可略去重力,弦的截面直径与长度相比可忽略,弦视为曲线均匀:质量是均匀的,线密度为常数。,(2)横振动:振动发生在同一平面内。若弦的平衡位置为x轴,横向是指弦上各点在同一平面内垂直于x轴的方向运动;微小:振幅极小,张力与水平方向的夹角很小。,.,牛顿运动定律:,横向:,纵向:,其中:,则,.,其中:,其中:,.,一维波动方程,令:,-非齐次方程,自由项,-齐次方程,忽略重力作用:,(弦振动方程),.,一维非齐次波动方程弦的受迫振动,.,(1)首先确定所要研究的物理量,(2)根据物理规律分析微元和相邻部分的相互作用(抓住主要影响,忽略次要影响),这种相互作用在一个短时间段里如何影响物理量,数学物理方程的导出步骤为:,(3)用数学语言表达出这种相互影响,经简化整理就得到数学物理方程。,.,例2、杆的纵振动,考虑一均匀细杆,沿杆长方向作微小振动,假设在垂直杆长方向的任一截面上各点的振动情况(位移)完全相同。,牛顿运动定律:,.,.,例3、热传导方程,热传导现象:当导热介质中各点的温度分布不均匀时,有热量从高温处流向低温处。,问题:在三维空间中,考虑均匀的、各向同性的物体,研究物体内部温度的分布规律。,简化假设:,所要研究的物理量:,温度,.,傅里叶实验定律:,在dt时间内沿法线方向通过dS流入V的热量为:,k0为热传导系数,与介质材料有关。,从时刻t1到t2通过S流入V的热量为,高斯公式,.,流入的热量:,流入的热量导致V内的温度发生变化,温度发生变化需要的热量为,能量守恒定律,(齐次)热传导方程,.,非齐次热传导方程,.,.,三种典型的数学物理方程,.,同一类物理现象中,各个具体问题又各有其特殊性。边界条件和初始条件反映了具体问题的特殊环境和历史,即个性。,初始条件:能够用来说明某一具体物理现象初始状态的条件。,边界条件:能够用来说明某一具体物理现象边界上的约束情况的条件。,二、定解条件的推导,.,初始时刻的温度分布:,B、热传导方程的初始条件,C、泊松方程和拉普拉斯方程的初始条件,描述稳恒状态,与时间变量无关,不提初始条件,A、弦振动方程的初始条件,1、初始条件描述系统的初始状态,初位移初速度,.,2、边界条件描述系统在边界上的状况,A、弦振动方程的边界条件,(1)固定端:振动过程中端点(x=a)保持不动,其边界条件为:,或:,(2)自由端:x=a端既不固定,又不受位移方向力的作用。,(3)弹性支承端:在x=a端受到弹性系数为k的弹簧支承,或,第一类边界条件,第二类边界条件,第三类边界条件,.,B、热传导方程的边界条件(以S表示某物体V的边界),(1)边界S上的温度为已知函数f(x,y,z,t),(f是定义在边界S上的函数),(2)绝热状态(即在S上的热量流速为零)或流速已知,(3)热交换状态,牛顿冷却定律:单位时间内物体单位表面积与周围介质交换的热量,同物体表面温度与周围介质温度差成正比。,热交换系数;周围介质的温度,第一类边界条件,第二类边界条件,第三类边界条件,.,边界条件,第一类边界条件,第二类边界条件,第三类边界条件,.,三、定解问题的概念,1、定解问题,把某种物理现象满足的偏微分方程和其相应的定解条件结合在一起,就构成了一个定解问题。,(1)初值问题:只有初始条件,没有边界条件的定解问题;(2)边值问题:没有初始条件,只有边界条件的定解问题;(3)混合问题:既有初始条件,也有边界条件的定解问题。,.,.,.,2、定解问题的检验,解的存在性:定解问题是否有解;解的唯一性:定解问题的解是否只有一个;解的稳定性:定解条件有微小变动时,解是否有相应的微小变动。,如果定解问题存在唯一且稳定的解,则称问题是适定的。,3、偏微分方程的解,古典解:如果将某个函数u代入偏微分方程中,能使方程成为恒等式,则这个函数就是该偏微分方程的解。,形式解:未经过验证的解为形式解。,.,4、偏微分方程一般分类,(1)按未知函数及其导数是否线性,分为线性微分方程和非线性微分方程;,(2)按方程中未知函数导数的最高阶数,分为一阶、二阶和高阶微分方程。,(3)线性微分方程按自由项是否为零,分为齐次方程和非齐次方程,思考,判断下列方程的类型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年怀化道路运输从业资格证考哪些项目
- 2025年兰州货运从业资格证模拟考试题及答案解析大全
- 2025年黔东南资格证模拟考试
- 2025年商洛货运从业资格证考试题
- 2025年白银货物运输驾驶员从业资格考试系统
- 线材生产设备操作培训
- 2025年心电遥测监护仪合作协议书
- 煤矿生产计划管理考核方案
- 传统戏曲在引爆点理论下的破圈路径探索
- 标书交货期承诺与保证措施研究
- 玉盘二部合唱简谱
- 《Python程序设计基础教程(微课版)》全套教学课件
- 摄影培训教学课件:摄影用光
- 食品从业者工作服清洗消毒记录
- 化妆品经营使用单位现场检查表
- 骨料检测知识培训讲义
- DB33∕T 2387-2021 外贸综合服务企业服务规范
- 农药经营许可管理制度
- 通用精美电子小报模板(35)
- 浮头式换热器设计毕业论文
- MSDS-火花机油
评论
0/150
提交评论