已阅读5页,还剩733页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,理论力学教程(第三版),周衍柏,编,高等教育出版社,1,0.1力学的研究对象,力学(mechanics)的研究对象是机械运动(mechanicalmotion)经典力学研究在弱引力场中宏观物体的低速运动力学:运动学、(静力学)、动力学,Natureandnatureslawlayhidin,night:,Godsaid:,letNewtonbe!Andallwaslight!,2,理论力学与普物力学的关系,理论力学是力学的延续与提高主要的概念和定律一样理论力学用高等数学方法处理物理问题分析力学,3,理论力学的任务,研究物体机械运动的一般规律,理论力学的研究对象有限个自由度的力学体系,质点刚体,两个模型,4,理论力学研究的条件,宏观低速下,质量不变,绝对时间,绝对空间,5,*vc,*物体的尺度原子,分子尺度,理论力学的学习,预备知识:普通力学+高等数学以公理、定律为依据,应用数学推演的方法导出其他定理和结论偏重于问题的提出、求解严格基础训练、强化现代技术应用注重问题的延拓分析培养科学精神,6,科学是一种方法,它教导人们:一些事物是怎样被了解的,什么事情是已知的,现在了解到什么程度(因为没有事情是绝对已知的),如何对待疑问和不确定性,证据服从什么法则,如何去思考事物,做出判断,如何区别真伪和表面,理查德.,费曼,现象。,参考书,梁昆淼.梁昆淼.赵凯华.卢德馨.,力学.力学.力学.,(上册)第四版,高等教育出版社,2009(下册)第四版,高等教育出版社,2010,第二版,高等教育出版社,2004,大学物理学.第二版,高等教育出版社,2003,7,0.2,理论力学的内容结构,矢量力学(即牛顿力学)分析力学,矢量力学是以牛顿运动定律为基础,从分析质量和物体受,力情况,由此探讨物体的机械运动规律.在矢量力学中,涉及的量多数是矢量,如力、动量、动量矩、力矩、冲量等.力是分析力学中最关键的量.,分析力学以达朗贝尔原理为基础,从分析质量和质量系能量情,况,由此探讨物体机械运动规律.分析力学中涉及的量多数是标量,如动能、势能、拉格朗日函数、哈密顿函数等。动能和势能是最关键的量.,8,0.3,力学简史,牛顿力学的建立:在哥白尼(日心说)推翻了托勒密的地心说,和在第谷布拉赫积累的天文观察资料基础上,开普勒发现了行星三定律总结万有引力定律,牛顿总结了三定律(自然哲学的数学原理,1687).分析力学:(1788)拉格朗日力学建立(至此认为力学天衣无缝).近代力学:19世纪末、20世纪初出现了经典力学无法解释的矛盾.1)高速(与c比):相对论(爱因斯坦);2)微观粒子:量子力学(薛定谔);3)纳米技术:0.1100nm尺度起关键作用(原子直径10-10m;人头发10-4m;人100m).9,0.4,力学单位制,物理理论组成:概念、概念的数学表示假定、方程组(物理量的关系)单位制通过以下步骤建立:,选出几个相互独立的物理量作为基本量;选取可以直接测量的物理量.,通常基本量都是,1.,由物理规律或定义推出用基本量表示的其他量(导出量)的关系式(称为导出关系式).确定出基本量的单位(基本单位);力学常用基本量为长度:米(m)、质量:千克(kg)、时间:秒(s)10,2.,3.,由导出关系式确定出导出量的单位(导出单位);基本量的量纲为其本身,并规定用基本量的符号的正体大写字母作为基本量的量纲的符号.导出量的量纲通过导出关系式用基本量的量纲表示.单位制:按照上述方法制定的一套单位.常用单位制:MKS、CGS、自然单位制.单位制制订要考虑不易变化以及测量的方便程度.,4.5.,6.,11,12,时间(time)的计量,以前定义:1秒为地球绕自身轴线转动一周(1天)的1/86400.目前时间标准:1秒的长度等于与铯133原子基态两个超精细能级之间跃迁相对应的辐射周期的9192631770倍.未来定义:原子氢微波激射器?因为它比铯原子钟稳定度高100倍.,13,时钟的改进,14,长度(length)的计量,空间反映物质运动的广延量,在三维空间里位置可由三个相互独立的坐标来确定.空间中两点间的距离为长度.1889年,第一届国际计量大会:法国国际计量局铂铱合金棒在0oC时两条刻线间的距离定义为1米.1960年,第十一届国际计量大会:采用氪86原子橙黄光波长的1650763.73倍定义为1米,实现了自然基准.1983年,第十七届国际计量大会:1米定义为光在真空中传播(1/299792458)秒的时间间隔内所经路程的长度.,15,质量(mass)的计量,物体所含物质的多少.惯性质量引力质量1889年,第一届国际计量大会:1千克质量的实物基准是保存在法国巴黎国际计量局中的一个特制的、直径和高均为39mm的铂钇合金圆柱体,称为国际千克原器.未来标准:是否采用自然基准?,16,物质世界的层次和数量级,17,物质世界的层次和数量级,micron,second,us,nano,second,ns,18,目前已知质量范围,已知宇宙银河系地球人灰尘烟草花叶病毒质子电子,1053kg2.21041kg6.01024kg6.0101kg,10-10kg10-13kg10-27kg10-31kg,6.72.31.79.1,19,力学量的单位,20,力学量,MKS制,CGS制,工程制,长度质量时间速度加速度力动量冲量功,能,m(米)kg(千克)s(秒)m/s(米/秒)m/s2(米/秒2)N(牛顿)kgm/sNsNm,cm(厘米)g(克)s(秒)cm/s(厘米/秒)cm/s2(厘米/秒2)dyn(达因)dynsdynserg(尔格),m(米)kgf/(ms2)s(秒)m/s(米/秒)m/s2(米/秒2)kgf(千克力)kgfskgfskgfm,gcm/s,0.5,量纲(dimension),在不考虑数字因子时,表示一个物理量是由哪些基本量导出的以及如何导出的式子,称为这个物理量的量纲.在力学中CGS和MKS单位制的基本量是长度、质量和时间,它们的量纲分别为L、M和T.,任何力学量Q的量纲为Q=LMT,式中,为量纲指数.,21,量纲分析,定理,设我们在选定单位制中的基本量数目为m,它们的量纲为X1,X2,Xm.用P代表导出量P的量纲,则,Xam,Xa1Xa2,P,1,2,m,上式取对数,lnPa1lnX1a2lnX2amlnXm,把lnX1,lnX2,lnXm看做m维空间的“正交基矢”,则(a1,a2,am)相当于“矢量”lnP在基矢上的投影.,22,定理,P1,P2,Pn,设某物理问题内涉及n个物理量(包括物理常量),而我们所选的单位制中有m个基本量(nm),则由此可以组成n-m,个无量纲的量函数关系式,.在物理量,之间存在的,P,P,P,1,2,nm,12,n,f(P1,P2,Pn)0可表达成相应的无量纲形式,F(1,2,nm)0,12,nm,或者从上式把1解出来:,n=m的情况下,有两种可能.若P1,P2,Pm的量纲彼此独立,则不能由它们组成无量纲的量;如不独立,则还可能组成无量纲的量.23,例1虽然单个微粒撞击墙壁的力是局部而短暂的脉冲,但大量粒子撞击的平均效果就是均匀而持久的压力.如设粒子流中每个粒子的速度都垂直于墙壁,并大小一样,皆为v.粒子质量为m,单位体积内的粒子数为n.试导出墙壁受到的压强与上述三个物理量之间的关系.,这是一个力学问题,有三个基本量,质量、长度和时间,即m=3.本题涉及的物理量:n,m,v,P(m=4)的量纲分别为:,解:,lnn0lnM(3)lnL,0lnT0lnT,lnm1lnMlnv0lnM,0lnL,1lnL(1)lnT,(1),lnP1lnM(1)lnL,(2)lnT,由于只有3个基本量,相当于3维基矢空间,所以上述4个量只有3个是线性无关的.设前3个是无关量,则有,24,lnPx1lnnx2lnmx3lnv将(1)式代入,则有1lnM(1)lnL(2)lnT,x10lnM(3)lnL,0lnT0lnT,x21lnMx30lnM,0lnL,1lnL(1)lnT,由于lnM,lnL,lnT是正交基矢,在上式中它们的系数应分别相等,0x11x2(3)x10x20x10x2,01,x31x31,(1)x32,x11,x21,x32,求解上述方程组,得到,25,于是我们得到,lnP1lnn1lnm2lnv从而得到Pknmv2k是一个无量纲的数学常数,根据具体情况不同,k可能变化,而压强与这三个物理量的关系是不变的.,总结:,利用量纲分析,虽然不能完全定量的给出物理问题的答案,但是能够对物理问题提供一个简便的分析思路,甚至不需要知道定律和物理机制的细节.,26,例2解:,用量纲分析法证明勾股定理直角三角形的面积A可由它的一边(例如斜边c)和一个锐角(如)所决定.是无量纲的,所以,Ac2()如图,作c边的垂线将三角形分成两个与原来相似的小直角三角形,它们各有一个同样的锐角,故它们的面积应分别为,Aa2(),Ab2(),1由A=A1+A2得,2,c,a,c2()a2(),b2(),c2,a2,b2,消去(),即得,b,这样我们就利用量纲分析定量的得到了勾股定理.,27,0.6,微积分预备知识,常见函数的导数,1,n,dy,dx,xn,y,nxn1,y,dxdy,dx,dsinx,ysin,x,y,cosx,dxdy,dxdcosx,ycos,x,y,sin,x,dx,dxdlnxdx,dydx,1x,ylnx,y,x,dy,de,ex,y,ex,y,dx,dx,28,导数运算定理,2,d,du,dv,u(x),v(x),dxd,dx,dx,du,dv,u(x)v(x)v(x),u(x),dx,dx,dx,du,dv,u(x),v(x),d,u(x),dx,dx,v(x)2,dx,v(x),d,dudv,uv(x),dx,dvdx,29,3常见函数的幂级数展开式,函数,展开式,收敛范围,x)1/2x)3/2x)5/2x)1/2x)3/2x)5/2x)1x)2,x2x2x2,x3x3x3,x4x4x4,(1(1(1(1(1(1(1(1,111,x,11,113,1135,11111111,1,xxxxx,2431,246311,24683113,23,xx,25,2453,246531,24685311,24,246135,2468,2,x2x2x2x2,x3x3x3,x4x4x4,111,x,13,1357,1,24,246,2468,2,3,xx,35,357,3579,2,24,246,2468,57,579,57911,5,x,24,246,2468,2,x3,x4,1x,xx,12x3x24x35x4,30,x31,x51,sinxcosx,x,1,x417,1,x,3!,5!,x2,x6,1x3,1,x,2!,4!,6!,x5x2,x7,x9,tan,x,x,1,2,62,x,3,15,315,2835,exln(1,x3,x4,1,1,xx,1,1,1,1,x,1!,2!,3!,4!,x2,x3,x4,1,1,1x1,x),2,3,4,x,x2,x3,x4,ln(1,1,1,1,1x1,x),2,3,4,31,4基本不定积分公式,函数,不定积分,f(x),f(x)dx,n1,x,xn(n1),C,n1,cosxCsinxC,sinx,cos1,x,ln|x|C,xex,ex,C,32,5积分运算定理,(i)如果f(x),(a是常量),则au(x)dx,=a,u(x),f,(x)dx,(ii)如果f(x)=u(x),v(x),则,f(x)dxu(x)dxv(x)dx,u(v)v(x),则u(v)v(x)dx,如果f(x)=,(iii),u(v)dv,f(x)dx,33,0.7,矢量基本知识,标量(scalar):物理学中像质量、密度、能量、温度、压强等,在选定单位后仅需用一个数字来表示其大小的物理量.矢量(vector):像位移、速度、加速度、动量、力等,除数量大小外还有一定的方向,并遵从一定的合成法则与,随坐标变换的法则的物理量.,z,AAxiAyj,Azk,AxAcos,cos2cos2,AyAcos,Acos,Az,A,cos2,k,1,Ax,y,y34,2,2,2,2,AAxAyAz,j,x,i,Az,A,1矢量的加减法,A1,A2,AnB1,B2,Bn,则,考虑n维矢量,AB,A1,A2,AnB1,B2,BnA1B1,A2B2,AnBn,B,A,(交换律),ABBA,ABCABC矢量的标积,(结合律),2,A和B是两个任意矢量,它们的标积定义为,AxBxAyBy,AzBz,AB,ABcosBA,AB,AB,(交换律)(分配律),ABCAB,AC,35,矢量的矢积,3,A和B是两个任意矢量,它们的矢积定义为,AB,(AyBzAzBy)i,(AzBx,AxBz)j(AxBy,AyBx)k,iAxBx,jAyBy,kAzBz,C,ABsin,CAB,B,ABBA,(反交换律),A,ABCABAC,36,矢量的三重积物理学中经常遇到矢量的三重积,常见的两种,4,ABC,(i)三重标积,Ax,Ay,Az,ABC,BCACAB,ABC,B,B,B,x,y,z,Cx,Cy,Cz,ABC,(ii)三重矢积,ABCACB,ABC,显然这个矢积还是在矢量B和C平面内.,37,第一章,质点力学,1.1运动的描述方式,1.2,速度、加速度的分量形式,1.3,平动参考系,1.4,质点运动定律,1.5,质点运动微分方程,1.6非惯性系动力学(一),1.7功与能,1.8质点动力学的基本定理与基本守恒定律,1.9有心力,第一章部分作业解答,第一章质点力学,1,质点运动学质点动力学,2,运动学的主要内容,研究物体运动的几何性质,运动学所涉及的研究内容包括:1.建立物体的运动方程2.分析运动的速度、加速度、角速度、角加速度等3.研究运动的分解与合成规律,3,质点运动学导读,参考系、坐标系、质点位矢运动学方程、轨道位移、速度、加速度自然坐标系,切向、法向加速度,相对运动,绝对(加)速度、相对(加)速,度、牵连(加)速度,4,1.1,运动的描述,本节导读,质点、参考系、坐标系、质点位矢运动学方程、轨道位移、速度、加速度,5,1,质点,具有一定质量的几何点,自由质点:可以在空间自由运动的质点.,确定一,个自由质点在空间的位置需要三个独立变量.,2,参考系,坐标系,参考系:为描述物体的运动而选取的参考物体,坐标系:用以标定物体的空间位置而设置的坐标系统,6,3,位置矢量与运动方程,z,位置矢量(位矢)从坐标原点O出发,指向质点所在位置P的一有向线段位矢用坐标值表示为,P(x,y,z),r,O,y,x,rxiyj,zk,位矢的大小为,x2,y2,z2y,r,x,z,cos,cos,cos,位矢的方向,r,r,r,7,运动方程,r,x(t)i,y(t),j,z(t)k,参数形式,xyz,x(t)y(t)z(t),轨道方程,F(x,y,z)0,8,4,位移,z,A,B,r,设质点作曲线运动,rA,rB,t时刻位于A点,位矢rAt+t时刻位于B点,位矢,O,rB,y,x质点相对于某参考系运动时,位置连续变化.,在给,定时间内,联结质点初位置A和末位置B的直线,并从A指向B加上箭头,叫做质点在给定时间内的位移.,9,rrBrAAB,5,速度速度是反映质点运动的快慢和方向的物理量,定义:单位时间内质点所发生的位移,z,A,(1)平均速度,B,r,rA,rB,(2),瞬时速度,O,y,rlim,dr,ms1,v,t,dt,t0,x,速度的方向为轨道上质点所在处的切线方向.,10,rvmst,v,vxi,vy,jvzk,s,B,2,2,2,v,v,vx,vy,vz,A,r,lim,(3),速率,t,dt,一般情况:,因此,r,s,v,则,r,dr,ds,v,v,当t0时:,11,v,vsdst0,v1,z,6,加速度加速度是反映速度变化的物理量,v2,O,平均加速度,y,瞬时加速度,x,k,i,j,dvy,dvx,dvdt,dvz,a,v1,dt,dtd2y,dt,v,k,i,j,d2x,d2z,v2,dt2,dt2,dt2,2,2,2,axay,a,az12,axiayj,azk,vms2t,a,运动学的主要内容,研究物体运动的几何性质,运动学所涉及的研究内容包括:1、建立物体的运动方程2、分析运动的速度、加速度、角速度、角加速度等3、研究运动的分解与合成规律,质点运动学导读,参考系、坐标系、质点位矢运动学方程、轨道位移、速度、加速度自然坐标系,切向、法向加速度,相对运动,绝对(加)速度、相对(加)速,度、牵连(加)速度.,1.2,速度、加速度的分量表示式,本节导读,直角坐标系中位移、速度、加速度表示极坐标系中位移、速度、加速度表示切向加速度与法向加速度,1直角坐标系,位置矢量,rxi,yj,zk,速度表示,d,zk,xi,yj,r,v,dt,加速度表示,d,v,xi,yj,zk,a,dt,运动学的两类问题(1)已知运动方程,求质点任意时刻的位置、速度以及加速度,d,d,2,dr,dv,dr,d,rt,v,a,r,2,dt,dt,dt,(2)已知运动质点的速度函数(或加速度函数)以及初始条件求质点的运动方程、轨道方程,v,t,dv,adt,v,dv,t,adt,0,0,r,t,dr,vdt,r,dr,t,vdt,0,0,r2ti19,2tj,2,例1已知质点的运动方程,求(1)轨道方程;(2)t=2s时质点的位置、速度以及加速度;(3)什么时候位矢恰好与速度矢垂直?,y192t2,解:(1),x2t,1,x2,y19,消去时间参数,2,22i19,222j,(2),4i11jm/s,r,t2,d,r,v,2i8j,v,2i4tj,t2,dt,8,82,arctan,7558,22,8.25,v,m/s,2,2,d,4j,dv,2i,4tj,r,a,v,dt,dt,a4ms-2,方向沿y轴的负方向,rv2ti192t2j2i4tj,(3),2),2,4t4t(192t,4t(2t18),8t(t,3)(t3)0,t10(s),t23(s),两矢量垂直,例2,路灯距地面高度为h,身高为l,的人以速度v0在,路上匀速行走.求(1)人影头部的移动速度;(2)影长,增长的速率.解:(1),x2x1,x2,l(hl)x2,h,hx1,两边求导:(hl),dx2,dx1,h,dt,dtdx1,dx2,hv0,其中:,v,v,v,0,dt,dt,hl,lOx1x2x,h,bx2,x1,(2),令,为影长,l,dbdt,l,dx2,b,x2,v,h,h,dt,dx,hv,2,0,以,代入,hl,dt,lv0,v,得,hl,设椭圆规尺AB的端点A和B沿直线导槽Ox及Oy滑,例3,动,而B以匀速度c运动.求尺规上M点的轨道方程,速,MBb,角OBA为.,度及加速度.其中MAa,,解:,由图知,M点的坐标为,yB,xbsin,acos,y,消去,得轨道方程,b,x2,y2,M,1,a,b2,a2,y,x,A,O,速度分量为,bcos,asin,x,y,x,y1(ab)cos,x10,因B点坐标为,b)sin,y1,vB,(a1,c,c,sin,ab,bc,ac,x,cot,y,故M点速度分量,ab,ab,故M点加速度分量,2,42,bc,bc,bc1,2,3,x,cscb,csc-,-,ab2,ab2,x3,a,y,0,例4当猴子从最高点自由下落时,射手瞄准射击,问能否击中目标?,分析:猴子和子弹都有重力加速度.可以用二维空间描述位置.,解:,取枪口作参照点,猴子初始位置r0,子弹初速度为v0.则时刻t猴子和子弹的位置为,r0,2,2,rc,r0,1,gt,rbv0t,1,gt,h0,v0,2,2,d,o,rcrb,r0v0t,击中的条件,r0,rcrb,r0v0t,h0,v0,这说明只要开始瞄准就可以击中猴子。但是有没有限制条件?,d,o,分析击中需要的时间和击中时的竖直位置,d2,h2,h2,d2,),g(,0,0,t,hh1,0,0,c,v2,v,2h,0,00,gh0d,2,2,v2,显然只有,时才可能击中,0,2h0,极坐标系,2,极坐标系:空间P的位置(r,)当P沿着曲线运动,速度沿轨道的切线.,v,j,i,P,c,r,rri,沿矢径方向,O,极轴,dr,d,ririri,v,dt,dt,i,dii,djj,当d趋向0时,i,i,di组成的等腰,jd,dQ,三角形两个底角接近直角,所以,j,i,P,r2,i,di,dj,j,c,r1,d,di,dj,O,d,d,极轴,id,j,di,从而,i,Q,di,di,j,j,d,i,P,d,d,dt,dtd,dj,dj,O,i,d,dt,dt,r,ri,v,j,r,ri,j,为径向速度,为横向速度,d,v,d,ri,d,rj,a,加速度,dt,dt,dt,i,rij,dr,d,ri,d,i,r,rj,dt,dtdr,dt,dj,j,d,d,rj,j,r,r,dt,dt,dt,dt,2,r,r,jri,arr,r2i,2r1d,rj,r,ri,j,2,2,rdt,小结:,r,ri,v,j,rj,ri,为径向速度,为横向速度,d,v,d,ri,d,r,j,a,dt,dt,dt,r2,r,a,r,1d,r2,2rr,a,rdt,3,自然坐标中的速度和加速度,在质点的运动轨迹上,任取一点O作为坐标的原点。从原点O到轨迹曲线上任意一点P的弧长定义为P,点的坐标,。,s,P,s,O,ssQsP,自然坐标之差,路程:,坐标轴的方向分别取切线和法线两正交方向。,en,et,P,s,s,Q,O,en,et,et,规定:切向坐标轴沿质点前进方向的切向为正,单位矢量为,en,法向坐标轴沿轨迹的法向凹侧为正,单位矢量为,ds,dr,因为,v,drdtds,dsdt,速度:v,et,s,P,Q,速率:v,v,dt,vt,加速度:,vvt,vn,v,v,v,v,vn,lim,lim,t,n,a,a,t,t,v,t0,t0,v2,dv,dve,a,e,a,t,t,n,n,dt,全加速度:,全加速度的大小:,at,an,全加速度的方向:,arctananat,22,aanat,例5,一质点沿半径为R的圆周运动,其路程s随时间,sbtct2,2式中b,c为大于零的常,t的变化规律为,数,且b2,Rc.求(1)质点的切向加速度和法向加速,度;(2)经过多长时间,切向加速度等于法向加速度.,ds,解:(1),v,b,ct,dt,dv,2,2,(bct),v,c,a,a,t,n,dt,R,R,(2),b,R,an,at,t,c,c,运动学的主要内容,研究物体运动的几何性质,运动学所涉及的研究内容包括:1、建立物体的运动方程2、分析运动的速度、加速度、角速度、角加速度等3、研究运动的分解与合成规律,质点运动学导读,质点、参照系、坐标系、质点位矢运动学方程、轨道位移、速度、加速度自然坐标系,切向、法向加速度,相对运动,绝对(加)速度、相对(加)速,度、牵连(加)速度.,1.3,平动参考系本节导读,相对运动绝对(加)速度相对(加)速度牵连(加)速度,y,v,yS,P,r,S,x,O,r0,r,x,O,r,r0,r,v,v,v,v,车做匀速运动时车上,车做匀速直线运动时,,(a),(b),的人观察到石子做直线运动,地面上的人观察到石子做抛物线运动,y,S,r,S,r,vx,r0,x,r,r,r0,dr,drdt,dr0,两边求导,dt,dt,y,dr,绝对速度:v,S,物体相对于,系的速度,dt,dr0,牵连速度:v,S系相对于,S,系的速度,0,dt,dr,v,相对速度:,物体相对于S系的速度,dt,小结:,y,v,yS,dr,drdt,dr0,P,r,S,x,dt,dt,O,r0,r,x,O,dv,dvdt,dudt,0,dt,vxb,vab,vax,aaa,vuv,例1,某人骑自行车以速率v向东行驶.今有风以同样的,速率由北偏西30方向吹来.问:人感到风是从哪个方向吹来?,解:,v,v,v0,v0,北偏西30,v,v,例2求抛体轨道顶点的曲率半径,v0cos,g,解:在抛物线的顶端处,速度只有水平分,v0,量v0cos,加速度g沿法向的.所以ang,是,v,cos2,vcos2,x2,0,0,m,曲率半径为,g,an,8ym,式中xm和ym分别是射程和射高.,例3,已知:小船M看成质点,被水冲走,用绳拉回A,点,设水流速度c1,拉回速度c2.求:小船的轨迹.,分析:注意c1、c2都是绝对速度.解:采用极坐标,c1,M,c,r,1,c2,dr,径向,c,A,2,dt,d,ccos(900),r,横向,1,dt,dr,c2,cscd,解微分方程:两式相除,r,c1,积分,c,2,lnr,lntan,c,c1,2,c2,k,,令,c1,2,设初始条件:,0,r,r0,0,t,k,k,cot0,rr0,tan,得轨道方程:,u,v,例4,当人站在岸上以速度v匀速拉动何种小船时,求,小船的运动速度和加速度.,x2,l2,h2,解:,l2,h2,x,XX,1,i,x,d,xi,1,d,l,h2)2,(l2,x,u,2l,dt,2,dt,vi,l,u,l2,h2,i,22,du,vh,a,x3,dt,Llhh,u,v,质点运动学小结,质点、参考系、坐标系、质点位矢运动学方程、轨道位移、速度、加速度,yj,直角坐标系,1,r,xi,zk,d,zk,xi,yj,r,v,dt,d,zk,xi,yj,v,a,dt,极坐标系,2,r,ri,v,j,径向速度,横向速度,d,v,d,ri,d,r,j,a,dt,dt,dt,1r,d,r,r2,a,2r,r,2,r,a,dr,r,dt,ds,3自然坐标系,v,e,t,dt,dt,dv,v2,dve,v,a,an,en,t,t,dt,相对运动,4,y,v,yS,dr,drdt,dr0,P,r,S,x,dt,dt,O,r0,r,x,O,a,a,a0,vuv,运动学的两类问题,(1)已知运动方程,求质点任意时刻的位置、速度以及加速度,d,d,d2,dr,dv,r,d,rt,v,a,r,2,dt,dt,dt,(2)已知运动质点的速度函数(或加速度函数)以及初始条件求质点的运动方程、轨道方程,v,t,dv,adt,v,dv,t,adt,0,0,r,t,dr,vdt,r,dr,t,vdt,0,0,动力学的主要内容研究物体的机械运动与作用力之间的关系,动力学所涉及的研究内容包括:,1.,动力学第一类问题已知系统的运动,,求作用在系统上的力.,2.,动力学第二类问题已知作用在系统上,的力,求系统的运动.,牛顿,IssacNewton(16431727)杰出的英国物理学家,经典物理学的奠基人.他的不朽巨著自然哲学的数学原理总结了前人和自己关于力学以及微积分学方面的研究成果.他在光学、热学和天文学等学科都有重大发现.,1.4,质点运动定律,本节导读,牛顿三定律、惯性、力惯性系、非惯性系、惯性力力学相对性原理、伽利略变换,1,牛顿运动定律,牛顿第一定律任何物体如果没有受到其他物体的作用时,都将保持静止状态或匀速直线运动状态.惯性定律,惯性:物体保持其运动状态不变的性质,力:物体间相互作用,它不仅说明了物体具有惯性的性质,还为整个力学体系选定了一类特殊的参考系惯性参考系,惯性系与非惯性系,T,ax,F,mg,牛顿定律成立的参考系,惯性系,非惯性系,相对于惯性系作加速运动的参考系,y,dp,牛顿第二定律,F,dt,pmv,F,Fi,动量:,i,注意:质点,惯性系,瞬时性,矢量性,牛顿第三定律,Fba,Fab,注意:作用力和反作用力施加在两个不同的物体上,它们属同一性质的力,并互以对方的存在为自己存在的前提.它们同时产生,同时消灭,相互依存,形成对立的局面.,例鸵鸟是当今世界上最大的鸟,有人说它不会飞是翅膀的退化.但是如果它长一副和身体成比例的翅膀,它能飞起来吗?,解:飞翔的条件是空气的上举力至少等于体重.空气,CSv2,上举力(与空气阻力一样的公式)为:,f,式中C为比例常数,S为翅膀的面积,飞翔的条件,mg,mg,f,即,v,CS,我们作简单的几何相似性假设,设鸟的几何线度为l,质,量m,l3,Sl2,于是起飞的临界速度,v,l,c,燕子最小滑翔速度大约20km/h,鸵鸟体长是燕子的大约25倍,显然它要飞翔的速度最少是燕子的5倍,这是飞机的起飞速度,鸵鸟奔跑的速度实际上只有40km/h.,思考问题:,拔河比赛胜负的关键是什么?,摩擦力的大小,大者赢,马德堡半球是用两队各8匹马向相反方向拉开的,如果一端拴在固定物上,另一端需要几匹马,才能拉开半球?还是8匹大人国是否能够存在,利用几何相似性分析之.不可能,重力就会压坏他.,2,力学相对性原理和伽利略变换,(i),力学相对性原理,力学定律的数学形式在一切惯性系中不变.,对于描述力学规律而言,一切惯性系都是平权的、等价的.,在一个惯性系中所做的任何力学实验,都不能判断该惯性系相对于其他惯性系的运动.,舟行不觉,关于托勒密和哥白尼两大世界体系的对话伽利略,1632,牛顿的绝对时空观,(ii),绝对的空间,就其本性而言,是与任何外界事物无关而永远相同和不动的.绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而均匀地与任何外界事物无关地流逝着.牛顿,长度的量度和时间的量度都与参考系无关!?,伽利略变换,(iii),y,y,P,S,S,vt,在两个惯性系中考察同一物理事件,Oz,x,x,O,z,s,s,两个惯性系:,一物理事件:,质点到达P,点,(,x,y,z,t),两个惯性系的描述分别为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论