




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等腰三角形的性质,A,B,C,等腰三角形:,有两条边相等的三角形,叫做等腰三角形.,等腰三角形的概念,相等的两条边叫做腰,另一条边叫做底边,底边与腰的夹角叫做底角.,两腰所夹的角叫做顶角,腰,腰,底边,顶角,底角,回顾,如图,把一张长方形的纸按图中虚线对折,并剪去绿色部分,再把它展开,得到的ABC有什么特点?,A,B,C,AB=AC,等腰三角形,活动1:动手操作,上面剪出的等腰三角形是轴对称图形吗?,A,B,C,D,把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,填入下表:,等腰三角形除了两腰相等以外,你还能发现它的其他性质吗?,AB=AC,BD=CD,AD=AD,B=C,ADB=ADC,BAD=CAD,活动2:细心观察大胆猜想,性质1(等边对等角),等腰三角形的两个底角相等。,已知:ABC中,AB=AC,求证:B=C,想一想:1.如何证明两个角相等?,议一议:,活动3:小组讨论,已知:如图,在ABC中,AB=AC.求证:B=C.,等腰三角形的两个底角相等。,D,方法一:作底边上的中线,已知:如图,在ABC中,AB=AC.求证:B=C.,等腰三角形的两个底角相等。,D,方法二:作顶角的平分线,1,2,已知:如图,在ABC中,AB=AC.求证:B=C.,等腰三角形的两个底角相等。,D,方法三:作底边的高线,(等腰三角形三线合一),性质2等腰三角形的顶角平分线与底边上的中线,底边上的高互相重合,活动4:小组讨论,思考:由BADCAD,除了可以得到B=C之外,你还可以得到那些相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现?,性质3等腰三角形是轴对称图形,其顶角的平分线(底边上的中线、底边上的高)所在的直线就是等腰三角形的对称轴。,1.根据等腰三角形性质2填空,在ABC中,AB=AC,,(1)ADBC,_=_,_=_.,(2)AD是中线,_,_=_.,(3)AD是角平分线,_,_=_.,BAD,CAD,CAD,BD,CD,AD,BC,BD,BAD,BC,AD,CD,知一线得二线“三线合一”可以帮助我们解决线段的垂直、相等以及角的相等问题。,2、等腰三角形一个底角为70,它的顶角为_.,3、等腰三角形一个角为70,它的另外两个角为_.,4、等腰三角形一个角为110,它的另外两个角为_.,顶角度数+2底角度数=180,0顶角度数180,0底角度数90,结论:在等腰三角形中,40,35,35,70,40或55,55,例1、如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求ABC各角的度数。,1、图中有哪几个等腰三角形?,A,B,C,D,应用新知,体验成功。,ABCABDBDC,2、有哪些相等的角?,ABC=ACB=BDCA=ABD,3、这两组相等的角之间还有什么关系?,BDC=2AABC+ACB+A=180,已知:如图,房屋的顶角BAC=100,过屋顶A的立柱ADBC,屋椽AB=AC.求顶架上B、C、BAD、CAD的度数.,应用新知,体验成功。,(1)猜想一下,等腰三角形底边中点到两腰的距离相等吗?如图将等腰三角形ABC沿对称轴折叠,观察DE与DF的关系,并证明你的结论。,A,B,C,D,E,F,(2)如果DE、DF分别是AB,AC上的中线或ADB,ADC的平分线,它们还相等吗?由等腰三角形是轴对称图形,利用类似的方法,还可以得到等腰三角形中哪些相等的线段?,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聚焦2024药师考试热点解析试题及答案
- 如何通过专利布局应对行业变革的挑战与策略试题及答案
- 系统架构设计师考试工作与家庭生活平衡试题及答案
- 积极心理学的基本理念试题及答案
- 激光技术证书考试复习策略试题及答案
- 智慧寻亲面试题及答案
- 名师笔试试题及答案
- 能够掌握的系统规划与管理师考试试题及答案
- 知识产权管理体系的考试试题及答案
- 基础ecexl考试题及答案
- 四川省成都市武侯区北京第二外国语学院成都附属中学2024-2025学年八年级上学期期中考试英语试题(含答案无听力原文及音频)
- 【MOOC】老子的人生智慧-东北大学 中国大学慕课MOOC答案
- 售后服务组织架构及人员岗位职责
- 智能交通监控系统运维服务方案(纯方案-)
- 废旧锂电池回收利用技术课件
- 区域医学检测中心的建设与管理V3
- 北京市矢量地图-可改颜色
- 技术转移案例
- 旅游公司抖音代运营合同范本
- 草莓水果课件教学课件
- 医生护士家长进课堂助教儿童医学小常识课件
评论
0/150
提交评论