函数解析式求法总结及练习题_第1页
函数解析式求法总结及练习题_第2页
函数解析式求法总结及练习题_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。例1 设是一次函数,且,求解:设,则, 二、配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法但要注意所求函数的定义域不是原复合函数的定义域,而是的值域 例2 已知 ,求 的解析式解:, , 三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。例3 已知,求解:令,则, , , 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点 则 ,解得: ,点在上 , 把代入得:整理得, 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式例5 设求解 显然将换成,得: 解 联立的方程组,得:例6 设为偶函数,为奇函数,又试求的解析式解 ,又 ,用替换得:,即 ,解 联立的方程组,得, 小结:消元法适用于自变量的对称规律。互为倒数,如f(x)、;互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式 例7 已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有再令 得函数解析式为:例5:已知求。解析:令则 令 则小结:所给函数方程含有2个变量时,可对这2个变量交替用特殊值代入,或使这2个变量相等代入,再用已知条件,可求出未知的函数,至于取什么特殊值,根据题目特征而定。通过取某些特殊值代入题设中等式,可使问题具体化、简单化,从而顺利地找出规律,求出函数的解析式。七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式例8 设是定义在上的函数,满足,对任意的N 都有,求 解 ,不妨令,得:,又 令式中的x1,2,n1得:将上述各式相加得:, , 三、练习(一)换元法1已知f(3x+1)=4x+3, 求f(x)的解析式. 2若,求.(二)配变量法3已知, 求的解析式. 4若,求.(三)待定系数法5设是一元二次函数, ,且,求与.6设二次函数满足,且图象在y轴上截距为1,在x轴上截得的线段长为,求的表达式.(四)解方程组法 7设函数是定义(,0)(0,+ )在上的函数,且满足关系式,求的解析式.8(1)若,求. (2)若f(x)+f(1-x)=1+x,求f(x).(五)特殊值代入法9若,且,求值.10已知:,对于任意实数x、y,等式恒成立,求(六)利用给定的特性求解析式.11设是偶函数,当x0时, ,求当x0时,的表达式.12对xR, 满足,且当x1,0时, 求当x9,10时的表达式.例6、已知函数对于一切实数都有成立,且。(1)求的值;(2)求的解析式。第 3 页 共 3 页练 习求函数的解析式例1已知f (x)= ,求f ()的解析式 ( 代入法 / 拼凑法 )变式1已知f (x)= , 求f ()的解析式 变式2已知f (x+1),求f (x)的解析式 例2若f f (x)4x3,求一次函数f (x)的解析式 ( 待定系数法 )变式1已知f (x)是二次函数,且,求f (x)例3已知f (x)2 f (x)x ,求函数f (x)的解析式 ( 消去法/ 方程组法 )变式1已知2 f (x) f (x)x1 ,求函数f (x)的解析式变式2已知2 f (x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论