已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时规范练38直线、平面平行的判定与性质基础巩固组1.如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.求证:BD平面FGH.2.如图,四棱锥P-ABCD中,底面ABCD是正方形,PA是四棱锥P-ABCD的高,PA=AB=2,点M,N,E分别是PD,AD,CD的中点.(1)求证:平面MNE平面ACP;(2)求四面体A-MBC的体积.3.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.4.(2017安徽淮南一模,文19)如图,直三棱柱ABC-A1B1C1中,ACAB,AB=2AA1,M是AB的中点,A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(1)若BE=3EC,求证:DE平面A1MC1;(2)若AA1=1,求三棱锥A-MA1C1的体积.5.(2017福建南平一模,文19)如图,在多面体ABCDE中,平面ABE平面ABCD,ABE是等边三角形,四边形ABCD是直角梯形,ABAD,ABBC,AB=AD=12BC=2,M是EC的中点.(1)求证:DM平面ABE;(2)求三棱锥M-BDE的体积.导学号24190931综合提升组6.如图,在三棱柱ABC-A1B1C1中,点E在线段B1C1上,B1E=3EC1,试探究:在AC上是否存在点F,满足EF平面A1ABB1?若存在,请指出点F的位置,并给出证明;若不存在,请说明理由.7.(2017山西太原三模,文19)如图,在三棱柱ABC-A1B1C1中,侧面ACC1A1底面ABC,A1AC=60,AC=2AA1=4,点D,E分别是AA1,BC的中点.(1)证明:DE平面A1B1C;(2)若AB=2,BAC=60,求三棱锥A1-BDE的体积.8.(2017江西宜春二模,文19)在四棱锥P-ABCD中,PA平面ABCD,ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,CDA=120,点N在线段PB上,且PN=2.(1)求证:MN平面PDC;(2)求点C到平面PBD的距离.导学号24190932创新应用组9.(2017吉林延边州模拟,文19)如图,三棱柱ABC-A1B1C1中,D是AA1的中点,E为BC的中点.(1)求证:直线AE平面BC1D;(2)若三棱柱ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求点E到平面BC1D的距离.导学号2419093310.如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将AEF沿线段EF折起到AEF位置,使得AC=26.(1)求五棱锥A-BCDFE的体积;(2)在线段AC上是否存在一点M,使得BM平面AEF?若存在,求AM;若不存在,请说明理由.答案:1.证法一 连接DG,CD,设CDGF=M.连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DFGC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点.又H为BC的中点,所以HMBD,又HM平面FGH,BD平面FGH,所以BD平面FGH.证法二 在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BHEF,BH=EF,所以四边形HBEF为平行四边形,可得BEHF.在ABC中,G为AC的中点,H为BC的中点,所以GHAB.又GHHF=H,所以平面FGH平面ABED.因为BD平面ABED,所以BD平面FGH.2.(1)证明 M,N,E分别是PD,AD,CD的中点,MNPA,又MN平面ACP,MN平面ACP,同理ME平面ACP,又MNME=M,平面MNE平面ACP.(2)解 PA是四棱锥P-ABCD的高,由MNPA知MN是三棱锥M-ABC的高,且MN=12PA=1,VA-MBC=VM-ABC=13SABCMN=1312221=23.3.解 (1)点F,G,H的位置如图所示.(2)平面BEG平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BCFG,BC=FG,又FGEH,FG=EH,所以BCEH,BC=EH,于是四边形BCHE为平行四边形.所以BECH.又CH平面ACH,BE平面ACH,所以BE平面ACH.同理BG平面ACH.又BEBG=B,所以平面BEG平面ACH.4.(1)证明 如图1,取BC中点N,连接MN,C1N,M是AB中点,MNACA1C1,M,N,C1,A1共面.BE=3EC,E是NC的中点.又D是CC1的中点,DENC1.DE平面MNC1A1,NC1平面MNC1A1,DE平面A1MC1.(2)解 如图2,当AA1=1时,则AM=1,A1M=2,A1C1=2.三棱锥A-MA1C1的体积VA-A1MC1=VC1-A1AM=1312AMAA1A1C1=26.图1图25.(1)证法一 取BE的中点O,连接OA,OM,O,M分别为线段BE,CE的中点,OM=12BC.又AD=12BC,OM=AD,又ADCB,OMCB,OMAD.四边形OMDA为平行四边形,DMAO,又AO平面ABE,MD平面ABE,DM平面ABE.证法二 取BC的中点N,连接DN,MN(图略),M,N分别为线段CE,BC的中点,MNBE,又BE平面ABE,MN平面ABE,MN平面ABE,同理可证DN平面ABE,MNDN=N,平面DMN平面ABE,又DM平面DMN,DM平面ABE.(2)解法一 平面ABE平面ABCD,ABBC,BC平面ABCD,BC平面ABE,OA平面ABE,BCAO,又BEAO,BCBE=B,AO平面BCE,由(1)知DM=AO=3,DMAO,DM平面BCE,VM-BDE=VD-MBE=1312223=233.解法二 取AB的中点G,连接EG,ABE是等边三角形,EGAB,平面ABE平面ABCD=AB,平面ABE平面ABCD,且EG平面ABE,EG平面ABCD,即EG为四棱锥E-ABCD的高,M是EC的中点,M-BCD的体积是E-BCD体积的一半,VM-BDE=VE-BDC-VM-BDC=12VE-BDC,VM-BDE=121312243=233.即三棱锥M-BDE的体积为233.6.解 方法一:当AF=3FC时,EF平面A1ABB1.证明如下:在平面A1B1C1内过点E作EGA1C1交A1B1于点G,连接AG.因为B1E=3EC1,所以EG=34A1C1.又因为AFA1C1,且AF=34A1C1,所以AFEG,所以四边形AFEG为平行四边形,所以EFAG.又因为EF平面A1ABB1,AG平面A1ABB1,所以EF平面A1ABB1.方法二:当AF=3FC时,EF平面A1ABB1.证明如下:在平面BCC1B1内过点E作EGBB1交BC于点G,因为EGBB1,EG平面A1ABB1,BB1平面A1ABB1,所以EG平面A1ABB1.因为B1E=3EC1,所以BG=3GC,所以FGAB.又因为AB平面A1ABB1,FG平面A1ABB1,所以FG平面A1ABB1.又因为EG平面EFG,FG平面EFG,EGFG=G,所以平面EFG平面A1ABB1.因为EF平面EFG,所以EF平面A1ABB1.7.(1)证明 如图,取AC的中点F,连接DF,EF,在AA1C中,点D,F分别是AA1,AC的中点,DFA1C,同理,得EFABA1B1,DFEF=F,A1CA1B1=A1,平面DEF平面A1B1C,又DE平面DEF,DE平面A1B1C.(2)解 过点A1作AC的垂线,垂足为H,由题知侧面ACC1A1底面ABC,A1H底面ABC,在AA1C中,A1AC=60,AC=2AA1=4,A1H=3,AB=2,BAC=60,BC=23,点E是BC的中点,BE=3,SABE=12ABBE=1223=3,D为AA1的中点,VA1-BDE=VA1-ABE-VD-ABE=12VA1-ABE=1213A1HSABE=1633=12.8.(1)证明 在正三角形ABC中,BM=23.在ACD中,M为AC中点,DMAC,AD=CD.ADC=120,DM=233,BMMD=3.在等腰直角三角形PAB中,PA=AB=4,PB=42,BNNP=3,BNNP=BMMD,MNPD.又MN平面PDC,PD平面PDC,MN平面PDC.(2)解 设点C到平面PBD的距离为h.由(1)可知,BD=833,PM=16+4=25,SPBD=1283325=8153.SBCD=128332=833,由等体积可得138334=138153h,h=455,点C到平面PBD的距离为455.9.(1)证明 设BC1的中点为F,连接EF,DF,则EF是BCC1的中位线,根据已知得EFDA,且EF=DA,四边形ADFE是平行四边形,AEDF,DF平面BDC1,AE平面BDC1,直线AE平面BDC1.(2)解 由(1)的结论可知直线AE平面BDC1,点E到平面BDC1的距离等于点A到平面BDC1的距离,设为h.VE-BC1D=VA-BC1D=VB-AC1D,13SBC1Dh=13SAC1D3,1312253h=1312223,解得h=255.点E到平面BDC1的距离为255.10.解 (1)连接AC,设ACEF=H,连接AH.因为四边形ABCD是正方形,AE=AF=4,所以H是EF的中点,且EFAH,EFCH.从而有AHEF,CHEF,又AHCH=H,所以EF平面AHC,且EF平面ABCD,从而平面AHC平面ABCD.过点A作AO垂直HC且与HC相交于点O,则AO平面ABCD.因为正方形ABCD的边长为6,AE=AF=4,故AH=22,CH=42,所以cos AHC=AH2+CH2-AC22AHCH=8+32-2422242=12.所以HO=AHcos AHC=2,则AO=6.所以五棱锥A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024年一级人力资源管理师考试题库(带答案解析)
- 2024年现代农业大棚示范园购销合同3篇
- 2024年跨国企业营销与市场代运营合同
- 2024年销售团队业绩承诺及客户关系维护合同3篇
- 2024年版设计服务协议提前终止协议版
- 2024版场地外包合同范本
- 劳动人事管理签订合同范本
- 二零二五年地砖施工环保认证与质量保障合同3篇
- 2024年税收优惠政策框架3篇
- 2024年钢材订购协议
- 劳务派遣服务外包技术方案
- 采购管理实务全套教学课件
- 极致物业管理系统收费管理业务操作
- GB∕T 29639-2020 生产经营单位生产安全事故应急预案编制导则
- 贵州省工伤保险待遇申领授权委托书
- 媒介融合(ppt)课件
- 酒店项目投资分析报告可行性报告
- 液压系统中油管尺寸的选择
- 视频监控台账参考模板
- 初一初三国家体育锻炼标准评分表
- F1方程式赛车的空气动力学
评论
0/150
提交评论