初中七年级下册数学 6.1.1平方根.docx_第1页
初中七年级下册数学 6.1.1平方根.docx_第2页
初中七年级下册数学 6.1.1平方根.docx_第3页
初中七年级下册数学 6.1.1平方根.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时备课课题:6.1.1平方根(2)上课时间 年 月 日教学目标知识与技能:会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律过程与方法:能用夹值法求一个数的算术平方根的近似值。情感、态度、价值观:体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数.教学重点:夹值法及估计一个(无理)数的大小的思想教学难点:夹值法及估计一个(无理)数的大小。教学方法:启发,讲,练结合教学准备:多媒体课件 ,计算器课时安排:1 教 学 过程二次备课引入新课教师提出以下问题:我们已经知道,正数x满足=a,则称x是a的算术平方根当a恰是一个数的平方数时,我们已经能求出它的算术平方根了,例如,=4;但当a不是一个数的平方数时,它的算术平方根又该怎祥求呢?例如课本第161页的大正方形的边长等于多少呢?(学生分组讨论并回答)讲授新课教师提问:究竟有多大?建议:1、先让学生思考讨论并估计大概有多大,在此基础上按书本讲解并板书可以这样提出问题并讲解:由直观可知招大于1而小于2,那么了是1点几呢?(接下来由试验可得到平方数最接近2的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,大于1.4而小于1.5.这里默认了非负数a和b当ab时,这里可以从得到。2、用夹值法去逼近一个(无理)数,是一个重要的求近似数的方法,也是一种无限逼近的数学 思想,教师应加以重视,让学生体验它的妙处3、关于是一个“无限不循环小数”要向学生详细说明为无理数的概念的提出打下基础教师提出问题:你对正数a的算术平方根的结果有怎样的认识呢?师生一起总结以下结论:的结果有两种情况:当a是完全平方数时,是一个有限数;当a不是一个完全平方数时,是一个无限不循环小数。例1:用计算器求下列各式的值:(教师的指导下学生动手操作) (1)(2)(精确到0.001)可按照书本讲注意计算器的用法,指出计算器上显示的也只是近似值,但我们可以利用计算器方便地求出一个正数的算术平方根的近似值 例2:(用多媒体显示课本第43页的例3)题略建议:1、首先要注意学生是否弄清了题意;然后分析解题思路:能否裁出符合要求的纸片,就是要比较两个图形的边长,而由题意,易知正方形的边长是20 cm,所以只需求出长方形的边长,设长方形的长和宽分别是3xcm和2xcm,求得长方形的长为3cm后,接下来的问题是比较3和20的大小,这是个难点,要让学生思考,充分发表自己的意见,然后再比较2、视学生掌握知识的情况在例3前可先解决下面的问题:比较4和,2和27大小 巩固练习课本第44页的练习(其中第2题要求不用计算器)课堂总结1、被开方数增大或缩小时,其相应的算术平方根也相应地增大或缩小,因此我们可以利用夹值的方法来求出算术平方根的近似值;2、利用计算器可以求出任意正数的算术平方根的近似值;3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?4、怎样的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论