第七课时二次函数在闭区间上最值问题研究.doc_第1页
第七课时二次函数在闭区间上最值问题研究.doc_第2页
第七课时二次函数在闭区间上最值问题研究.doc_第3页
第七课时二次函数在闭区间上最值问题研究.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

两类二次函数在闭区间上最值问题的求解策略诸暨二中高一备课组 影响二次函数在闭区间上的最值主要有三个因素:抛物线的开口方向、对称轴和区间的位置。就高中学生而言,感到困难的主要是这两类问题:一是动函数定区间,二是定函数动区间。本文以实例说明具体的求解方法,供读者参考。一. 动函数定区间1.抛物线的开口方向影响二次函数的最值例1.已知二次函数 在 上有最大值4,求实数 的值。解:因为有固定的对称轴 ,且 (1)若 时,则 即 (2)若 时,则 即 综上可知: 或 2.抛物线的对称轴影响二次函数的最值例2.已知二次函数 在 上有最大值2,求的值。解:分析:对称轴 与区间 的相应位置分三种情况讨论:(1)当 时, (2)当 时, 即 无解;(3)当 时, 综上可知: 或 例3.已知二次函数 在 上有最小值,求实数 的值。解:分析:对称轴 与区间 的中点相对位置分两种情况讨论。(1)当 时, (2)当 时, 综上可知: 或 例4.设是正数, ,若 的最大值是 ,试求 的表达式。分析:将代数式 表示为一个字母,由 解出y后代入、消元,建立关于的二次方程,仍看成求动函数定区间的最值问题。解:设 将 代入消去y得 而 (1)当 即 或 时(2)当 即 时(3)当 即 时 综上可知:二.定函数动区间1.区间的长度不变,但由于区间位置的移动,影响二次函数的最值,例5.已知二次函数 当 上有最小值,试求 的解析式。解:分析:区间与相对于对称轴的位置分三种情况讨论(1)当 即 时, (2)当 即 时, (3)当 时, 综上可知: 例6.已知二次函数 ,当 上的最大值为 ,试求 的解析式。解:分析:只要对区间中点是在对称轴 的左侧还是右侧进行讨论就可以了。(1)当 ,即 时, (2)当 ,即 时, 综上可知:2.区间的长度不变,影响二次函数的最值例7.已知二次函数 在 上有最大值7,求实数的值。解:分析:分区间包含对称轴或不包含对称轴为两种情况讨论。(1)当 且 即 时 (2)当 且 即 时 综上可知: 或 二次函数在闭区间上的最值 姓名_班级_1函数在上的最小值和最大值分别是( ) 1 ,3 ,3 (C) ,3 (D), 32函数在区间上的最小值是 23函数的最值为 最大值为8,最小值为0 不存在最小值,最大值为8(C)最小值为0, 不存在最大值 不存在最小值,也不存在最大值4如果实数满足,那么有 ( )(A)最大值为 1 , 最小值为 (B)无最大值,最小值为 (C))最大值为 1, 无最小值 (D)最大值为1,最小值为5已知函数在闭区间上有最大值3,最小值2,则的取值范围是 ( ) (A) (B) (C) (D) 6若函数的取值范围是_8若,那么的最小值为_9设是方程的两个实根,则的最小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论