高三文科数学一轮复习之导数.doc_第1页
高三文科数学一轮复习之导数.doc_第2页
高三文科数学一轮复习之导数.doc_第3页
高三文科数学一轮复习之导数.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学讲义之导数及其应用【题型分类】选择题部分:例1(2011江西)若f(x)x22x4lnx,则f(x)0的解集为()A(0,) B(1,0)(2,)C(2,) D(1,0)C【解析】 方法一:令f(x)2x20,又f(x)的定义域为x|x0,(x2)(x1)0(x0),解得x2.故选C.方法二:令f(x)2x20,由函数的定义域可排除B、D,取x1代入验证,可排除A,故选C.例2(2011江西) 曲线yex在点A(0,1)处的切线斜率为()A1 B2 Ce D.A【解析】 yex,故所求切线斜率kex|x0e01.故选A.例3(2011山东) 曲线yx311在点P(1,12)处的切线与y轴交点的纵坐标是()A9 B3 C9 D15C【解析】 因为y3x2,所以ky|x13,所以过点P(1,12)的切线方程为y123(x1),即y3x9,所以与y轴交点的纵坐标为9.例4(2011湖南) 曲线y在点M处的切线的斜率为()A B.C D.B【解析】 对y求导得到y,当x,得到y.例5(2011浙江) 设函数f(x)ax2bxc(a,b,cR),若x1为函数f(x)ex的一个极值点,则下列图象不可能为yf(x)的图象是()图13D【解析】 设F(x)f(x)ex,F(x)exf(x)exf(x)ex(2axbax2bxc),又x1为f(x)ex的一个极值点,F(1)e2(ac)0,即ac,b24acb24a2,当0时,b2a,即对称轴所在直线方程为x1;当0时,1,即对称轴在直线x1的左边或在直线x1的右边又f(1)abc2ab0,故D错,选D.简答题部分:例6(2011浙江)设函数f(x)a2lnxx2ax,a0.(1)求f(x)的单调区间;(2)求所有实数a,使e1f(x)e2对x1,e恒成立注:e为自然对数的底数【解答】 (1)因为f(x)a2lnxx2ax,其中x0,所以f(x)2xa.由于a0,所以f(x)的增区间为(0,a),减区间为(a,)(2)由题意得:f(1)a1e1,即ae.由(1)知f(x)在1,e内单调递增,要使e1f(x)e2对x1,e恒成立,只要解得ae.例7(2011北京) 已知函数f(x)(xk)ex.(1)求f(x)的单调区间;(2)求f(x)在区间0,1上的最小值【解答】 (1)f(x)(xk1)ex.令f(x)0,得xk1.f(x)与f(x)的情况如下:x(,k1)k1(k1,)f(x)0f(x)ek1所以,f(x)的单调递减区间是(,k1);单调递增区间是(k1,)(2)当k10,即k1时,函数f(x)在0,1上单调递增所以f(x)在区间0,1上的最小值为f(0)k;当0k11,即1k0,知ax22ax10在R上恒成立,因此4a24a4a(a1)0,由此并结合a0,知0a1.例9(2011福建)已知a,b为常数,且a0,函数f(x)axbaxlnx,f(e)2(e2.71828是自然对数的底数)(1)求实数b的值;(2)求函数f(x)的单调区间;(3)当a1时,是否同时存在实数m和M(m0时,由f(x)0得x1,由f(x)0得0x1;当a0得0x1,由f(x)1.综上,当a0时,函数f(x)的单调递增区间为(1,),单调递减区间为(0,1);当a0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,)(3)当a1时,f(x)x2xlnx,f(x)lnx.由(2)可得,当x在区间内变化时,f(x),f(x)的变化情况如下表:x1(1,e)ef(x)0f(x)2单调递减极小值1单调递增2又22,所以函数f(x)(x)的值域为1,2据此可得,若相对每一个tm,M,直线yt与曲线yf(x)都有公共点;并且对每一个t(,m)(M,),直线yt与曲线yf(x)都没有公共点综上,当a1时,存在最小的实数m1,最大的实数M2,使得对每一个tm,M,直线yt与曲线yf(x)都有公共点例10(2010浙江)已知函数f(x)(a)(ab)(a,bR,ab) ()当a1,b2时,求曲线yf(x)在点(2,f(2)处的切线方程; ()设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3x1,x3x2证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4【解析】本题主要考查函数的极值概念、导数运算法则、切线方程、导线应用、等差数列等基础知识,同时考查抽象概括、推理论证能力和创新意识。 ()解:当a=1,b=2时,因为(x)=(x-1)(3x-5)故(2)=1又f(2)0,所以f(x)在点(2,0)处的切线方程为yx2()证明:因为(x)3(xa)(x),由于ab故a所以f(x)的两个极值点为xa,x不妨设x1a,x2,因为x3x1,x3x2,且x3是f(x)的零点,故x3b又因为a2(b),x4(a),所以a,b依次成等差数列,所以存在实数x4满足题意,且x4例11(2009浙江)已知函数f(x)=x+(1-a) x-a(a+2)x+b(a,bR).(I)若函数f(x)的图像过原点,且在原点处的切线斜率是-3,求a,b的值;()若函数f(x)在区间(-1,1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论