




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.初中数学概念一、数的有关概念和运算1、正数都大于零,负数都小于零,正数大于负数2、实数a的相反数是a;零的相反数是零;若a和b互为相反数,那么:a+b=03、一个正数的绝对值是它本身;零的绝对值是零;一个负数的绝对值是它的相反数;绝对值的几何意义:从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离任意实数的绝对值一定为非负数;绝对值等于同一正数的实数有两个,它们互为相反数;反之,互为相反数的两个数绝对值相等;去掉绝对值符号首先要判断绝对值里面的实数是正是负,然后再根据定义去掉绝对值符号4、实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大;正数大于零;负数小于零;正数大于一切负数;两个负数,绝对值大的反而小;常用方法:比差法:两数相减与“0”比较。AB A一B0;AB A一B0;AB A一B05、实数a(a0)的倒数是1/a;若a和b互为倒数,那么:ab=1;零无倒数6、有理数的运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数同零相加,仍得这个数(2)有理数减法法则:减去一个数,等于加上这个数的相反数(3)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同零相乘,都得零.不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正. 几个数相乘,有一个因数为零,积就为零(4)有理数除法则:除以一个数等于乘上这个数的倒数 (注意:0不能作除数) 有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除. 零除以任何一个不等于零的数,都得零(5)有理数乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(6)有理数混合运算的运算顺序规定如下: 先算乘方,再算乘除,最后算加减;同级运算,按照从左至右的顺序进行;如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.7、(1)加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:abc=a(bc);乘法分配律:a(b+c)=ab+ac.(2)幂的运算:aman=am+n(m、n为正整数);(m、n为正整数);(n为正整数);(m、n为正整数,mn,a0),a0=1(a0);(a0,n为正整数)8、数轴上两点之间的距离公式:在数轴上,A、B两点的坐标分别为xa 、xb,那么它们之间的距离是AB|xbxa|9、科学记数法:把一个数记成的形式,其中1a10,n为整数,这种记数的方法叫做科学记数法10、有效数字:一个近似数,从左边第一个不是零的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字,精确度的形式有两种:精确到哪一位数;保留几个有效数字;一个数的近似数,常常要用科学记数法来表示二、式的有关概念和运算1、合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变2、去括号法则:括号前面是“”号,把括号和它前面的“”号去掉,括号里各项都不变符号;括号前面是“”号,把括号和它前面的“”号去掉,括号里各项都改变符号3、添括号法则:所添括号前面是“”号,括到括号里的各项都不变符号;所添括号前面是“”号,括到括号里的各项都改变符号4、整式加减的一般步骤可以总结为: (1) 如果有括号,那么先去括号;(2) 如果有同类项,再合并同类项整式的乘除:单项式乘以单项式:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。m(abc)mambmc多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。(ab)(cd)acadbcbd进行多项式乘法运算一方面要特别注意顺序,这样不会遗漏和重复;另一方面要注意符号,尤其某一项前面是“”时,与它相乘的各项都要变号;单项式除以单项式:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:把这个多项式的每一项除以这个单项式,再把所得的商相加。(mambmc)mabc 乘法公式:平方差公式:;完全平方公式:=立方和(差)公式:(ab)(a2abb2)a3b35、平方根的性质:一个正数有两个平方根,它们互为相反数;零有一个平方根,它是零本身;负数没有平方根;立方根的性质:正数有一个立方根;负数有一个负立方根;零有一个立方根,它是零本身二次根式的运算:;();6、分式:分式有无意义:B0时,分式无意义;B0时,分式有意义;分式值为零:A0且B0时,分式的值为零;分式的约分:根据分式的基本性质把一个分式的分子与分母的公因式约去叫做分式的约分。约分的主要步骤是:把分式的分子与分母分解因式,然后约去分子与分母的公因式;最简分式:一个分式的分子与分母没有公因式时,叫做最简分式,分式运算的最终结果若是分式,一定要化成最简分式;通分:根据分式的基本性质,把几个异分母的分式分别化成几个与原来分式值相等的同分母分式的过程,叫做分式的通分;最简公分母: (1)取各分母系数的最小公倍数(2)凡出现的字母或含有字母的代数式都要取(3)相同字母或含有字母的代数式的指数取最大的分式的基本性质1)(B0,M是不等于0的整式)2)(B0,M是不等于0的整式)3)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。分式的运算:加、减:同分母分式的加减:异分母分式的加减:;乘:,一般情况是先对各分式的分子、分母因式分解,约分后再分子乘以分子、分母乘以分母;除:;分式的混合运算:与有理数四则运算类同,如果一个代数式含有分式的加、减、乘、除、乘方多种运算,那么先做乘方,再做乘、除,最后做加、减;如果有括号,就先做括号内的运算;在同一级运算中,按照从左向右的顺序进行;繁分式化简:如果分式的分子或分母中含有分式,这样的分式叫做繁分式。繁分式的化简通常可利用除法运算,也可利用分式基本性质逐次去分母,使繁分式化简。三、方程用方程(组)解决实际问题的过程:问题方程(组)解答一元一次方程:移项:把原方程中的已知项改变符号以后,从方程的一边移到另一边,这种变形叫做移项。移项是解方程的最常用变形方法,注意移项时要变号。解一元一次方程的步骤:1)去分母:方程两边同乘以各分母的最小公倍数;2)去括号:按去括号法则化去方程中所有括号;3)移项:把含有未知数的项移到方程的一边,不含未知数的项移到另一边。4)合并同类项:化为最简方程axb(a0)的形式。5)系数化为1:方程两边都除以未知数的系数,得出方程的解x;在解具体的一元一次方程时,上述步骤应根据具体情况灵活运用。二元一次方程组:解法:代入消元法:代入消元法简称代入法,是解二元一次方程组的一种常用方法,它的一般步骤是:从方程组中选取一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来,例如,用x 的代数式表示y,可写成y=ax+b的形式。将y=ax+b代入方程组的另一个方程中去,消去y,得到一个关于x的一元一次方程。解这个关于x的方程,求出x的值。将所求得的x的值代入y=ax+b中,求出y的值,从而得到方程组的解。加减消元法:加减消元法简称加减法,是解二元一次组的常用方法,其中一般步骤是:在方程组的二个方程中,如果同一个未知数的系数既不相等又不是互为相反数,就用适当的数分别乘二个方程的两边,使变形后的一个未知数的系数互为相反数或相等。把变形后的两个方程的两边分别相加或相减,消去一个未知数,得一个一元一次方程,解这个方程,求出其中一个未知数值。将求出的未知数值代入原方程组的任意一个方程中,求出另一个未知数的值,从而得到方程组的解。说明:代入消元法和加减消元法都是针对标准形的二元一次方程组的,因此运用前应先化简原方程组。加减消元法和代入消元法的目的都为消元,因此解方程组时可根据方程组特点,灵活使用消元方法。一元二次方程的解法:1)直接开平方法。如一个一元二次方程通过整理,可化成(px+q)2=r (p0 r0)这种形式,就可以利用直接开平方的方法来解2)配方法。把方程的左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方来解。3)公式法。先把一元二次方程化成一般式:ax2+bx+c =0(a0),在b24ac0时公式是x= (b24ac0),这种利用求根公式解一元二次方程的方法,称为公式法,若b24ac0则方程无解。4因式分解法。解一元二次方程时,把方程右边化为0,左边化为两个一次因式的积的形式,再分别令这两个一次因式等于0,从而得到原方程的两个解。这种解一元二次方程的方法叫做因式分解法。5如果不对一元二次方程的解法加以限定的话,解方程时,首先选择因式分解法或直接开平方法,这些特殊方法难以奏效时,再考虑公式法,一般不用配方法,除特别规定例外。一元二次方程的根的判别式:=b24ac。根的三种情况:0 ax2+bx+c=0(a0)有两个不相等的实数根。=0 ax2+bx+c=0(a0)有两个相等的实数根。 0 ax2+bx+c=0(a0)无实数根。一元二次方程的根与系数的关系(韦达定理)如果方程ax+bx+c=0(a0)的两个实数根是x1, x2,那么x1+ x2= ,x1x2分式方程:1)在分式方程的两边同乘以最简公分母,约去分母,化成整式方程;2)解这个整式方程;3)验根。在方程变形时,有时可能产生不适合原方程的要,这种根叫做原方程的增根。在解分式方程时,经常用各分式的最简公分母去乘方程两边,去分母,化为整式方程;这种方程的变形有可能会产生增根。在解分式方程时,必须要验根。验根的方法,即将解方程所得到的根代入原方程,找出是否有增根,若有则舍去,也可以整式方程的根代入最简公分母,看结果是不是等于0,使最简公分母为零的根是原方程的增根,必须舍去。四、不等式的性质1、如果ab,那么a+cb+c,acbc;2、如果ab,且c0,那么acbc;如果ab,且c0,那么acbc.一元一次不等式(组)解法:1)解一元一次不等式的步骤,解一元一次不等式的依据是不等式的性质,因此解一元一次不等式的步骤和解一元一次方程很类似。去分母;去括号;移项;合并同类项,化为axb或axb(其中a、b是常数,且a0)的形式;不等式的两边同时除以未知数项的系数a,即系数化为1。2在“去分母”或“两边同时除以未知数项的系数”时,千万要注意,不等式两边如果同时乘以(或除以)一个负数时,必须改变不等号的方向。这是解不等式与解方程不同的地方。3不等式中除了用“、”等符号外,用符号“”(“”)连结的式子也被子看作是不等式,这种符号表示大于或等于(小于或等于)的关系。4不等式的解集xa与xa(或xa与xa的区别,在于前者表示a不是这个不等式的解,而后者表示a也是这个不等式的解。在数轴上表示这两个不等式的解集时,用空心圆圈和实心圆点来加以区别。解一元一次不等式组的步骤:1)先求出不等式组里每个不等式的解集;2)再求出各个不等式的解集的公共部分,就可得到这个不等式组的解集。五、函数1坐标轴上点的特征:x轴上点的纵坐标为0,一般记为p(x,0);y轴上点的纵坐标为0,一般记为q(0,y);各象限内点的坐标的特征:点p(x,y)第一象限:(,) 第二象限:(,) 第二象限:(,) 第四象限 :(,)点p(x,y)坐标的几何意义;点p(x,y)到x轴的距离是;点p(x,y)到y轴的距离是;点p(x,y)到原点的距离是关于坐标轴,原点对称的两点坐标的特征点p(a,b)到x轴的对称点是p1(a,b);点p(a,b)到y轴的对称点是p2(a,b);点p(a,b)关于原点的对称点是p3(a,b);2正比例函数的性质正比例函数y=kx(k0的常数)有如下的性质:当k0时,它的图像在第一、三象限内,y随x的增大而增大; 当k0时,它的图像在第二、四象限内,y随x的增大而减小。函数的性质应结合它的图像来理解一次函数1)函数y=kx+b(k,b是常数 k0)叫做一次函数当b=0时,一次函数y=kx+b就成为y=kx(k是常数 k0),这时y 是x的正比例函数,所以正比例函数是一次函数的特殊情况。2)一次函数的图像一次函数的图像是经过点(0,b)且平行于直线y=kx的一条直线,一次函数y=kx+b的图像也叫做直线y=kx+b。直线y=kx+b与y轴相交于点(0,b),bj 直线y=kx+b与y轴交点的纵坐标两条直线L1:y=k1x+b1,L2:y=k2x+b2,如果k1=k2,b1b2,那么L1 L2,反之也成立。由两点确定一条直线可知,在画一次函数的图像时,只要先描出直线上的两点,再过这两点画一条直线就可以了,当b0时,一般取与坐标轴相交的两点(,0)、(0, )较好。3)直线位置与常数的关系k决定直线的方向k0直线的方向向上;k0直线的方向向下b决定直线与y轴交点的位置b0 直线与y轴交点在x轴上方;b=0 直线过原点;b0 直线与y轴交点在x轴下方;4)一次函数与一元一次方程的关系一次函数y=kx+b(k0),当y=0时,即对应一元一次方程y=kx+b(k0),也就是说一次函数y=kx+b(k0)的图像与x轴的交点的横坐标x的值就是方程y=kx+b(k0)的根。5)求一次函数表达式:待定系数法由已知条件,先设一个式子中的未知系数,然后根据已知数据求出未知系数,从而法语出这个式子的方法叫待定系数法。3二次函数:二次函数的性质a0时,抛物线的开口向上,顶点是它的最低点;a0时,抛物线的开口向下,顶点是它的最高点;a决定抛物线的开口方向和开口大小。抛物线的对称轴是直线x=,顶点坐标是(,)如果抛物线用顶点式y=-a(xh)2+k表示时,那么对称轴是直线x=h,顶点坐标是(h,k) 当b=c=0时,二次函数为最简单的二次函数y=ax2。当b、c不全为0时,二次函数y=ax2+bx+c的图像与y=ax2的图像的形状相同,位置不同,可以通过适当的平移,使两个图形重合,如把二次函数y=(x1)24的图像,向左平移一个单位,向上平移四个单位,即与y=3x2的图像重合。画二次函数的图像时,应先求出它的对称轴和顶点坐标,然后利用它的对称性列表取点,如取与y轴的交点及基本对称点,如果图像与x轴有两个交点,取这两个交点等,最后描点连接,就可画出二次函数的图像。抛物线中间由a、b、c决定: a0开口向上 a决定抛物线的开口方向 a0开口向上 c决定抛物线与y轴交点的位置:c0图像与y轴交点在x轴的上方;c=0图像过原点;c0图像与x轴交点在x轴的下方。a、b决定抛物线对称轴的位置:(对称轴:x=)a、b同号对称轴在y轴左侧;b=0对称轴是y轴;a、b异号对称轴在y轴右侧。=b24ac决定抛物线与x轴交点情况:0抛物线与x轴有两个不同交点;=0抛物线与x轴有惟一公共点(相切);0抛物线与x轴有无公共点。二次函数的最值二次函数y=ax2+bx+c(其中a、b、c是常数,a0)中,如果a0,那么当x=时,函数y有最小值,记作y最小值;如果a0,那么当x=时,函数y有最大值,记作y最大值;所谓最值就是最大值或最小值,二次函数取最大值或最小值是与决定图像开口方向的a有关。二次函数的最值反映到图像上,就是最高点或最低点,也就是顶点的纵坐标。二次函数与一元二次方程的关系二次函数y=ax2+bx+c(其中a、b、c是常数,a0),当y0时,即对应一元二次方程ax2+bx+c0(a0),也就是说,二次函数y=ax2+bx+c(其中a、b、c是常数,a0)的图像与x轴的交点的横坐标x的值就是方程ax2+bx+c0(a0)的根。当=b24ac0时,由于一元二次方程ax2+bx+c0有两个不相等的实数根,所以抛物线y=ax2+bx+c与x轴有两个交点。当=b24ac0时,由于一元二次方程ax2+bx+c0有两个相等的实数根,所以抛物线y=ax2+bx+c与x轴只有一交点,即抛物线的顶点;当=b24ac0时,由于一元二次方程ax2+bx+c0没有实数根,所以抛物线y=ax2+bx+c与x轴没有交点。4反比例函数反比例函数的性质当k0时,它的图像的两个分支分别在第一、三象限内,在每个象限内,y随x的增大而减小。当k0时,它的图像的两个分支分别在第二、四象限内,在每个象限内,y随x的增大而增大。图像的两个分支都无限接近于x轴和y轴,但不会与x轴和y轴相交。注意:反比例函数的图像分别在两个不同的象限内,当k0时,两个分支分别在第一、三象限内,而第一象限内的y值总大于第三象限内y值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路洒水养护方案范本
- 新餐厅木工施工方案
- 湖南中医药高等专科学校《高雅艺术走进学生》2023-2024学年第二学期期末试卷
- 三明医学科技职业学院《信息系统项目管理》2023-2024学年第二学期期末试卷
- 组合钢模板衬砌施工方案
- 荆州职业技术学院《药物合成实验》2023-2024学年第二学期期末试卷
- 湖北镀锌桥架施工方案
- 湖南铁路科技职业技术学院《基础化学原理》2023-2024学年第二学期期末试卷
- 九江理工职业学院《智能移动设备应用软件开发》2023-2024学年第二学期期末试卷
- 汝州职业技术学院《中西医结合外科学2》2023-2024学年第一学期期末试卷
- 广东省佛山市S6高质量发展联盟2023-2024学年高一下学期4月期中考试数学
- 道路旅客运输企业双重预防机制建设指导手册
- 智慧农业的支撑技术简介
- 地下车库等环氧地坪漆工程投标文件(技术标)
- 雨露计划补助资金管理办法
- XXX小学“三会一课”活动记录
- 政务服务中心物业服务投标方案【新版】(技术方案)
- 品管圈活动在提高脑卒中患者日常基本生活自理技能训练执行率的应用效果
- (高清版)JTG 5142-2019 公路沥青路面养护技术规范
- 2024年4月自考00995商法(二)试题
- 医务科工作制度及流程(全套)
评论
0/150
提交评论