12.8一般周期_第1页
12.8一般周期_第2页
12.8一般周期_第3页
12.8一般周期_第4页
12.8一般周期_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八节 一般周期的函数的傅里叶级数 一 周期为2l的周期函数的 傅里叶级数 二 傅里叶级数的复数形式 第十二章 一 周期为2l的周期函数的傅里叶级数 周期为2l的函数f x 周期为2 的函数F z 变量代换 将F z 作傅氏展开 f x 的傅氏展开式 狄利克雷 Dirichlet 条件 1 在一个周期内连续或只有有限个第一类间断点 2 在一个周期内只有有限个极值点 设周期为2l的周期函数f x 满足收敛定理条件 则它的傅里叶级数展开式为 在f x 的连续点处 其中 定理 证明 令 则 令 则 所以 且它满足收敛定 理条件 将它展成傅里叶级数 在F z 的连续点处 变成 是以2 为周期的周期函数 其中 令 在f x 的连续点处 证毕 说明 其中 在f x 的连续点处 如果f x 为偶函数 则有 在f x 的连续点处 其中 注 无论哪种情况 在f x 的间断点x处 傅里叶级数 都收敛于 如果f x 为奇函数 则有 解 例2 把 展开成 1 正弦级数 2 余弦级数 解 1 将f x 作奇周期延拓 则有 2 将 作偶周期延拓 则有 说明 此式对 也成立 由此还可导出 据此有 当函数定义在任意有限区间上时 方法1 令 即 在 上展成傅里叶级数 周期延拓 将 在 代入展开式 上的傅里叶级数 其展开方法为 方法2 令 在 上展成正弦或余弦级数 奇或偶式周期延拓 将代入展开式 在 即 上的正弦或余弦级数 例3 将函数 展成傅里叶级数 解 令 设 将F z 延拓成周期为10的周期函数 理条件 由于F z 是奇函数 故 则它满足收敛定 为正弦级数 内容小结 1 周期为2l的函数的傅里叶级数展开公式 x 间断点 其中 当f x 为奇函数时 偶 余弦 2 在任意有限区间上函数的傅里叶展开法 变换 延拓 3 傅里叶级数的复数形式 利用欧拉公式导出 思考与练习 1 将函数展开为傅里叶级数时为什么最好先画出其图形 答 易看出奇偶性及间断点 2 计算傅里叶系数时哪些系数要单独算 答 用系数公式计算 如分母中出现因子n k 作业 P3191 1 3 2 2 3 从而便于计算系数和写出 收敛域 必须单独计算 习题课 备用题 期的傅立叶级数 并

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论