




免费预览已结束,剩余35页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 第一节预测准则 称为的预测值或的h步预测值怎样选取预测函数呢 直观的想法是所选取的预测函数应能够使预测误差尽可能的小 这就需要确定一种准则 使得依据这种准则能衡量采用某种预测函数所得的预测误差比采用别的预测函数所得的预测误差小 2 一 从几何角度提出预测问题 对在t h的取值进行预测 我们所能利用的就是yt在t和以前时刻的取值所提供的信息 也就是说是的函数 我们知道最简单的函数是的线性函数 设为现在的问题是如何求出系数使得与最接近 3 图4 1在平面M上的投影从几何图形来看 离yt h最近的是向量yt h在平面M上的投影 4 二 求解正交投影 基于直到时刻t的信息集对变量取值的预测记为 为获得此预测必需指明相应的损失函数 lossfunction 一个十分方便的结果是选取平方损失函数 即选取 使其均方误差达到最小 容易知道 关于的条件期望是关于的最小均方误差预测 这种预测具有许多优良性质 但其计算比较复杂 在许多的实际应用问题 我们更感兴趣于在的线性函数类中寻求的预测 5 例如时 可选取 假定我们已求得之值 使得预测误差与无关即有成立则称 4 1 式为yt 1关于的线性投影 并记为 6 三 最小均方误差预测 设随机序列适合一个ARMA模型 即在已知的条件下 很自然会考虑到的线性函数这是一种比较容易处理而在使用中最有广泛意义的情形 作为一个好的预测值 应该满足预测的误差越小越好 于是问题转化为求使与之间的误差最小 使预报的均方误差最小的称为线性最小均方预测 7 综上可得 yt h的线性最小均方误差预测为称 4 5 式为线性最小均方误差预测的传递函数形式 我们知道这是可以实现的 因为一个系统的参数完全可以由其格林函数确定 预测的残差为预测误差方差为 8 第二节ARMA模型预测 前面我们对最小均方预测的基本原理进行了讨论 所有的结论都是在平稳的条件下得到的 下面我们求ARMA模型的最小均方预测 一 AR p 模型的预测考虑一个AR 2 模型其向前一步的预测为一步预测的误差方差为 9 向前二步的预测为注意到故二步的预测误差的方差为 10 更一般的情形 遵从AR p 的序列满足随机差分方程由差分方程很容易得到AR p 的最小均方误差预测公式为再根据 4 9 式 AR p 模型的递推预报公式为 11 由上式可以看出 AR p 模型的最小均方预测公式比较简单 只要知道这p个历史值便可以得到任意步长的平稳线性最小均方预测 正是因为AR模型的建模与预测的简单性 所以它成为预测问题中应用得最为广泛的时间序列模型 12 二 MA q 模型的最小均方预测 对于MA q 模型我们可以得到预测值的递推公式为分析预测公式 4 11 可以看出MA模型的最佳预测具有以下两个特点 4 11 13 1 MA q 模型只能对未来进行q步预测 当h q时 预测值为零 时间序列均值为零 因此当模型阶数较低时 MA模型只能进行短期预测 2 MA模型预测中使用的 其数据需要的全部历史数据迭代计算 并需要设的取值 由此可知这种处理比较繁琐 有一定主观性 故不便应用 14 设有MA 2 模型则有一步预测因而又由于 因此预测误差的方差等于 对于前两步预测易知预测误差为 预测误差的方差为 15 类似可得三步预测的误差为预测误差的方差为与前三步预测相似 模型中已没有记忆对前四步预测有帮助 这时的预测值已经是这个系统的均值 即有其预测误差的方差为更一般的情况 对于一个MA q 模型h步预测公式为 16 h步预测残差的方差为三 ARMA p q 预测对于一个ARMA模型 仿照AR和MA模型同样的步骤可以推得关于ARMA p q 模型的预测公式 17 分析上面的公式可知 ARMA p q 模型的最佳计算具有以下特点 1 当时 预测计算公式中包含了 这q个值 与MA模型的预测计算一样 需要由迭代计算出 因此ARMA模型的预测计算也非常繁琐 2 当h q时 预测计算中不包含MA部分 可由进行递推计算 18 3 当h q时 如果把看成h的函数 记为 则预测公式是一个关于的齐次差分方程 因此 如同AR模型的最佳预测一样 也可以由齐次差分方程所确定 根据上面的分析可知 ARMA模型的最佳预测计算远较AR模型复杂 同时其建模过程也是繁琐的 19 第三节案例分析 例4 1 基于批发价格指数的美国通货膨胀研究批发价格指数 WholesalePriceIndex 简记为WPI 是通货膨胀测定指标的一种 它是根据大宗物资批发价格的加权平均价格编制而得的物价指数 反应不同时期生产资料和消费品批发价格的变动趋势与幅度的相对数 包括在内的产品有原料 中间产品 最终产品与进出口品 但不包括各类劳务 批发价格是在商品进入零售 形成零售价格之前 有中间商或批发企业所订 其水平决定于出厂价格或收购价格 对零售价格有决定性影响 20 所以有经济学家认为批发价格指数比消费物价指数具有更广泛的物价变动代表性 为此我们搜集了1960年第1季度至1990第4季度美国的WPI指数进行研究 数据来源于美国劳工统计局网站http stats bls gov 从1960年第1季度至1990第4季度的WPI共有124个数据 使用EViews命令PlotWPI可得其水平序列图如下 21 图4 2美国批发价格指数 22 在EViews中双击WPI这个序列 点击View DescriptiveStatistics HistogramandStats 则可以得到它基本描述统计特征图4 3 23 从图4 3可以得知 WPI的平均值是62 7742 最大值是116 2000 最小值是30 5000 标准差是30 2436 并且这是一个服从双峰分布的变量 为了判断时间序列模型的类型 我们要计算出自相关函数与偏相关函数值 在EViews中双击WPI这个序列 点击View Correlogram 在弹出的对话框中选择Level 然后点击确定 可得WPI的自相关函数与偏相关函数图4 4 24 图4 4WPI的自相关函数与偏相关函数图虽然偏相关函数是截尾的 但自相关函数衰减很慢 几乎不减少 所以不是拖尾的 因此WPI是一个非平稳序列 25 如果非要认为自相关函数是拖尾的 则照第三章的标准 模型应该是AR 1 的 使用命令LSWPIcAR 1 可得输出输出结果表4 1 26 从表4 1的最后一行的输出结果 EstimatedARprocessisnonstationary 可看出这个AR 1 过程是非平稳的 所以下面我们依照博克斯 詹金斯方法的思路 原始序列不平稳 但其差分序列可能是平稳的 所以下面我们对WPI的差分序列建模 使用命令genrDwpi D WPI 生成WPI的差分序列 然后用命令PlotDwpi画出Dwpi的差分图形4 5 双击Dwpi这个序列 点击View Correlogram 在弹出的对话框中选择Level 然后点击确定 可得WPI的自相关函数与偏相关函数图4 6 27 图4 5WPI的差分序列图 28 从图4 5看出序列Dwpi是一个无趋势的序列 从图4 6可以看出序列Dwpi偏相关函数3阶以后是截尾的 但自相关函数是拖尾的 因此序列Dwpi是一个平稳序列 适合建立一个AR 3 的模型 使用命令LSDwpicAR 1 AR 2 AR 3 可得输出输出结果表4 2 图4 6Dwpi的自相关函数与偏相关函数图 29 表4 2AR 3 模型的输出结果 30 从表4 2可以看出AR 2 的系数对应的p值较大 所以统计上不显著 因此剔除AR 2 这一项以后 再对模型进行拟合可得表4 3 31 从表4 3可以看出 模型的三个参数都通过了t检验 所以这些变量选用是恰当的 且F统计量对应的p值较小 所以模型的整体拟合效果较好 在输出结果视图下 点击View ResidualsTests Correlogram Q Statistic 可得模型残差序列的自相关函数与偏相关函数图4 7 32 因为Q 3 Q 10 对应的p值都比0 05大 可以认为模型的残差序列为白噪声 这也说明模型的拟合效果比较好 所以最终模型为即由于变量差分后损失了很多信息 所以差分序列的模型的R2不可能很高 还需要注意的是对输出结果解释 根据Wold分解定理EViews的输出格式表示的是 对序列 Dwpit 0 8280 建立剔除AR 2 这一项后的AR 3 模型 而不是对Dwpit建立AR 3 模型 33 输出结果中的0 8280是Dwpit的均值 而不漂移项 它的经济学含义是41年间的WPI的季度平均净增值是0 8280 上述案例分析中描述统计量 自相关函数 偏相关函数和ARMA模型的估计也可以用R软件来实现 下面我们给出相应的R程序 其中的中文是对下面各语句的文字说明 在运行中可以去掉 读取数据 WPI dat read table c WPI txt header T attach WPI dat WPI 34 画图 plot WPI type l 画线图hist WPI 画直方图acf WPI type correlation 画自相关函数图acf WPI type partial 画偏相关函数图plot diff WPI type l 画差分序列Dwpi线图hist diff WPI 画差分序列Dwpi直方图acf diff WPI type correlation 画差分序列Dwpi自相关函数图acf diff WPI type partial 画差分序列Dwpi偏相关函数图 35 描述统计量 summary WPI 给出最小值 第一分位数 中位数 平均值 第三分位数 最大值var WPI 给出方差sd WPI 给出标准差 估计模型 arima WPI order c 1 0 0 method CSS 对WPI拟合AR 1 模型fit arima diff WPI order c 3 0 0 method CSS 对差分序列Dwpi拟合AR 3 模型 36 resid fit residuals 给出AR 3 模型的残差Box test resid lag 3 type Ljung Box 给出Ljung Box检验统计量 检验残差是否还有自相关性本章小结1 预测是计量经济分析的重要部分 对某些人来说也许是最重要的部分 预测是经济与管理决策中最普遍且重要的一环 唯有把握未来 才能做出正确的决策 2 博克斯 詹金斯方法 Box Jenkins 或者ARMA方法 这种方法的要点是 在 数据自己说话 的哲理指引下 着重于分析经济时间序列本身的概 37 率或随机性质 而不在意于构造单一方程抑或联立方程组模型 所以此方法和传统的单一方程和联立方程模型是相对立的 3 对于一个时间序列的预测 基本的博克斯 詹金斯策略如下 1 首先检验序列的平稳性 这可以通过自相关函数 ACF 与偏相关函数 PACF 或者通过以后学习的单位根检验来实现 2 如果时间序列不平稳 将它差分一次或多次以获得平稳性 3 然后计算此时间序列的ACF和PACF 以判断序列是纯自回归还是纯移动平均的 或这二者的一种混合体 4 然后估计此尝试模型 38 5 分析尝试模型的残差 看它是不是白噪声 如果是 则尝试模型也许是一个好的估计模型 如果不是 则要从头做起 因此博克斯 詹金斯方法是一个反复的过程 6 最后选定的模型便可用于预测 4 最小均方误差准则是一种常用的统计准则 在此准则下 如果我们选择线性预测函数 则线性预测函数事实上是在空间上的正交投影 5 AR p 模型的最小均方预测公式比较简单 只要知道这p个历史值便可以得到任意步长的平稳线性最小均方预测 39 正是因为AR模型的建模与预测的简单性 它成为预测问题中应用得最为广泛的时间序
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位维修家具合同范本
- 写字楼招商服务合同范例
- 共享花园出租合同范本
- 单位设备维修合同范本
- 兼职上课合同范本
- 代客操盘合同 合同范本
- 人民医院护士聘用合同范本
- 医用制氧机转让合同范本
- 借款房屋合同范本
- 养生馆三个合伙人合同范本
- 2025年中国国投高新产业投资集团招聘笔试参考题库含答案解析
- 2024-2025学年小学美术一年级下册(2024)岭南版(2024)教学设计合集
- 《研学旅行课程设计》课件-研学课程设计计划
- 年产10吨功能益生菌冻干粉的工厂设计改
- 台球俱乐部助教制度及待遇
- 医院护士劳动合同
- 医师聘用证明.doc
- 核物理实验方法全册配套最完整精品课件
- 理论力学课件00796
- 学习叠层母排必须知道的电力知识
- 微波与天线矩形波导
评论
0/150
提交评论