初中数学正弦函数公式定理表总结.doc_第1页
初中数学正弦函数公式定理表总结.doc_第2页
初中数学正弦函数公式定理表总结.doc_第3页
初中数学正弦函数公式定理表总结.doc_第4页
初中数学正弦函数公式定理表总结.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学正弦函数公式定理表总结 不管是什么样的数学公式要领,都有着其最初的定义和性质,正弦函数也不例外。 正弦函数 锐角正弦函数的定义 在直角三角形ABC中,C=90,AB是C的对边c,BC是A的对边a,AC是B的对边b正弦函数就是sinA=a/c,即sinA=BC/AB. 定义与定理 定义:对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫做正弦函数。 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/sinA=b/sinB=c/sinC 在直角三角形ABC中,C=90,y为一条直角边,r为斜边,x为另一条直角边(在坐标系中,以此为底),则sinA=y/r,r=(x2+y2) 正弦函数是三角函数的一种,它同余弦函数是一对同胞兄弟。 初中数学正方形定理公式 关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。 正方形定理公式 正方形的特征: 正方形的四边相等; 正方形的四个角都是直角; 正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角; 正方形的判定: 有一个角是直角的菱形是正方形; 有一组邻边相等的矩形是正方形。 希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。 初中数学平行四边形定理公式 同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。 平行四边形 平行四边形的性质: 平行四边形的对边相等; 平行四边形的对角相等; 平行四边形的对角线互相平分; 平行四边形的判定: 两组对角分别相等的四边形是平行四边形; 两组对边分别相等的四边形是平行四边形; 对角线互相平分的四边形是平行四边形; 一组对边平行且相等的四边形是平行四边形。 上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。 初中数学直角三角形定理公式 下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。 直角三角形的性质: 直角三角形的两个锐角互为余角; 直角三角形斜边上的中线等于斜边的一半; 直角三角形的两直角边的平方和等于斜边的平方(勾股定理); 直角三角形中30度 角所对的直角边等于斜边的一半; 直角三角形的判定: 有两个角互余的三角形是直角三角形; 如果三角形的三边长a、b、c有下面关系a2+b2=c2 ,那么这个三角形是直角三角形(勾股定理的逆定理)。 以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。 初中数学等腰三角形的性质定理公式 下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。 等腰三角形的性质: 等腰三角形的两个底角相等; 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一) 上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。 初中数学三角形定理公式 对于三角形定理公式的学习,我们做下面的内容讲解学习哦。 三角形 三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边; 三角形的内角和定理:三角形的三个内角的和等于180度; 三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和; 三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角; 三角形的三条角平分线交于一点(内心); 三角形的三边的垂直平分线交于一点(外心); 三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论