已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二十二章 一元二次方程 主备人:刘鸿智教材内容本单元教学的主要内容:1.一元二次方程及其有关概念,一元二次方程的解法(开平方法、配方法、公式法、分解因式法),一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.2.本单元在教材中的地位和作用:教学目标1.一分析实际问题中的等量关系并求解其中未知数为背景,认识一元二次方程及其有关概念。2.根据化归思想,抓住“降次”这一基本策略,熟练掌握开平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.3.经历分析和解决问题的过程,体会一元二次方程的教学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。教学重点、难点重点:1一元二次方程及其有关概念2.一元二次方程的解法(开平方法、配方法、公式法、分解因式法)3.一元二次方程根与系数的关系以及运用一元二次方程分析和解决实际问题。难点:1.一元二次方程及其有关概念2.一元二次方程的解法(配方法、公式法、分解因式法),3.一元二次方程根与系数的关系以及灵活运用课时安排本章教学时约需课时,具体分配如下(供参考)221 一元二次方程 1课时222 降次 7 课时223 实际问题与一元二次方程 3 课时教学活动、习题课、小结 22.1 一元二次方程教学目的1使学生理解并能够掌握整式方程的定义2使学生理解并能够掌握一元二次方程的定义3使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式教学重点、难点重点:一元二次方程的定义难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别教学过程复习提问1什么叫做方程?什么叫做一元一次方程?2指出下面哪些方程是已学过的方程?分别叫做什么方程?(l)3x+4=l; (2)6x-5y=7;3结合上述有关方程讲解什么叫做“元”,什么叫做“次”引入新课1方程的分类:(通过上面的复习,引导学生答出)学过的几类方程是没学过的方程有x2-70x+825=0, x(x+5)=150这类“两边都是关于未知数的整式的方程,叫做整式方程”像这样,我们把“只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程”据此得出复习中学生未学过的方程是(4)一元二次方程:x2-70x+825=0, x(x+5)=150同时指导学生把学过的方程分为两大类:2一元二次方程的一般形式注意引导学生考虑方程x2-70x+825=0和方程x(x+5)=150,即x2+5x=150,可化为:x2+5x-150=0从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为ax2+bx+c=0(a0)的形式并称之为一元二次方程的一般形式其中ax2,bx,c分别称为二次项、一次项、常数项;a,b分别称为二次项系数、一次项系数【注意】二次项系数a是不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数例 把方程5x(x+3)=3(x-1)+8化成一般形式并写出它的二次项系数、一次项系数及常数项课堂练习 P27 1、2题归纳总结1方程分为两大类:判别整式方程与分式方程的关键是看分母中是否含有未知数;判别一元一次方程,一元二次方程的关键是看方程化为一般形式后,未知数的最高次数是一次还是二次2一元二次方程的定义:一个整式方程,经化简形成只含有一个未知数且未知数的最高次数是2,则这样的整式方程称一元二次方程其一般形式是ax2+bx+c=0(a0),其中b,c均可为任意实数,而a不能等于零布置作业:习题22.1 1、2题达标测试1.在下列方程中,一元二次方程的个数是( )3x2+7=0,ax2+bx+c=0,(x+2)(x-3)=x2-1,x2-+4=0,x2-(+1)x+=0,3x2-+6=0A.1个 B.2个 C.3个 D.4个2.关于x的一元二次方程3x2=5x-2的二次项系数,一次项和常数项,下列说法完全正确的是( )A.3,-5,-2 B.3,-5x,2 C.3,5x,-2 D.3,-5,23.方程(m+2)+3mx+1=0是关于x的一元二次方程,则( )A.m=2 B.m=2 C.m=-2 D.m24.若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是 5.方程4x2=3x-+1的二次项是 ,一次项是 ,常数项是 课后反思:22.2解一元二次方程第一课时 直接开平方法教学目的1使学生掌握用直接开平方法解一元二次方程2引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a0,c0)的方法教学重点、难点重点:准确地求出方程的根难点:正确地表示方程的两个根教学过程复习过程回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据求下列各式中的x:1x2=225; 2x2-169=0;336x2=49; 44x2-25=0一元二次方程的解也叫做一元二次方程的根解题的依据是:一个正数有两个平方根,这两个平方根互为相反数即 一般地,如果一个数的平方等于a(a0),那么这样的数有两个,它们是互为相反数引入新课我们已经学过了一些方程知识,那么上述方程属于什么方程呢?新课例1 解方程 x2-4=0解:先移项,得x2=4即x1=2,x2=-2这种解一元二次方程的方法叫做直接开平方法例2 解方程 (x+3)2=2 练习:P28 1、2归纳总结1本节主要学习了简单的一元二次方程的解法直接开平方法2直接法适用于ax2+c=0(a0,c0)型的一元二次方程布置作业:习题22.1 4、6题达标测试1.方程x2-0.36=0的解是 A.0.6 B.-0.6 C.6 D.0.62.解方程:4x2+8=0的解为 A.x1=2 x2=-2 B.C.x1=4 x2=-4 D.此方程无实根3.方程(x+1)2-2=0的根是 A. B. C. D. 4.对于方程(ax+b)2=c下列叙述正确的是 A.不论c为何值,方程均有实数根 B.方程的根是C.当c0时,方程可化为:D.当c=0时,5.解下列方程:.5x2-40=0 .(x+1)2-9=0.(2x+4)2-16=0 .9(x-3)2-49=0课后反思第二课时 配方法教学目的1使学生掌握用配方法解一元二次方程的方法2使学生能够运用适当变形的方法,转化方程为易于用配方法求解的形式,来解某些一元二次方程并由此体会转化的思想教学重点、难点重点:掌握配方的法则难点:凑配的方法与技巧教学过程复习过程用开平方法解下列方程:(1)x2=441; (2)196x2-49=0;引入新课我们知道,形如x2-A=0的方程,可变形为x2=A(A0),再根据平方根的意义,用直接开平方法求解那么,我们能否将形如ax2+bx+c=0(a0)的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题新课我们研究方程x2+6x+7=0的解法:将方程视为:x2+2x3=-7,即 x2+2x3+32=32-7, (x+3)2=2,这种解一元二次方程的方法叫做配方法这种方法的特点是:先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解例1 解方程x2-4x-3=0配方法解之在解的过程中,注意介绍配方的法则例2 解方程2x2+3=7x练习:P34 1、2题归纳总结应用配方法解一元二次方程ax2+bx+c=0(a0)的要点是:(1)化二次项系数为1;(2)移项,使方程左边为二次项和一次项,右边为常数;(3)方程两边各加上一次项系数一半的平方,使左边配成一个完全平方式.布置作业:习题22.2 1、3题达标测试1.方程x2-a2=(x-a)2(a0)的根是 A.a B.0 C.1或a D.0或a2.已知关于x的方程(m+3)x2+x+m2+2m-3=0一根为0,另一根不为0,则m的值为 A.1 B.-3 C.1或-3 D.以上均不对3.若x2-mx+是一个完全平方式,则m= A.1 B.-1 C.1 D.以上均不对4.方程x2=5的解是 ,方程(x-1)2=5的解是 ,方程(3x-1)2=5的解是 5. =(x- )2 =(x+ )2课后反思:第三课时 求根公式法教学目的1使学生掌握一般一元二次方程的求根公式的推导过程,并由此培养学生的分析、综合和计算能力2使学生掌握公式法解一元二次方程的方法教学重点、难点重点:要求学生正确运用求根公式解一元二次方程难点:1.求根公式的推导过程2.含有字母参数的一元二次方程的公式解法教学过程复习提问提问:当x2=c时,c0时方程才有解,为什么?练习:用配方法解下列一元二次方程(1)x2-8x=20; (2)2x2-6x-1=0引入新课我们思考用配方法解一般形式的一元二次方程,应如何配方来进行求解?新课(引导学生讨论)用配方法解一元二次方程ax2+bx+c=0(a0)的步骤解:a0,两边同除以a,得把常数项移到方程右边,并两边各加上一次项系数的一半的平方,得(a0)的求根公式用此公式解一元二次方程的方法叫做公式法应用求根公式解一元二次方程的关键在于:(1)将方程化为一般形式ax2+bx+c=0(a0);(2)将各项的系数a,b,c代入求根公式例1 解方程x2-3x+2=0.例2 解方程2x2+7x=4. 例5 解关于x的方程 x2-m(3x-2m+n)-n2=0练习P37 1题归纳总结1本节课我们推导出了一元二次方程ax2+bx+c=0(a0)的求根公式,即要重点让学生注意到应用公式的大前提,即b2-4ac02应注意把方程化为一般形式后,再用公式法求解布置作业:习题22.2 5、8、10题达标测试1.若代数式4x2-2x-5与2x2+1的值互为相反数,则x的值为 A.1或 B.1或 C.-1或 D.1或2.对于一元二次方程ax2+bx+c=0,下列叙述正确的是 A.方程总有两个实数根B.只有当b2-4ac0时,才有两实根C.当b2-4acx2,则x1-2x2的值是 。8方程x2=x的解是 9.用因式分解法解下列方程:(1).(2x-1)2+3(1-2x)=0 (2).(1-3x)2=16(2x+3)2 (3).x2+6x-7=010.选用适当的方法解下列方程: (1).(3-x)2+x2=9 (2).(2x-1)2+(1-2x)-6=0(3).(3x-1)2=4(1-x)2 (4).(x-1)2=(1-x)根据以上各方程的特点,选择解法的思路是:先特殊后一般.选择解法的顺序是:直接开平方法因式分解法公式法或配方法.配方法是普遍适用的方法,但不够简便,一般不常用.不过对于二次项系数为1,一次项系数为偶数的一元二次方程,用配方法可能比用公式法要简单些.课后反思:第五课时一元二次方程的根的判别式。教学目的1使学生理解并掌握一元二次方程的根的判别式2使学生掌握不解方程,运用判别式判断一元二次方程根的情况3. 通过对含有字母系数方程的根的讨论,培养学生运用一元二次方程根的判别式的论证能力和逻辑思维能力培养学生思考问题的灵活性和严密性教学重点、难点重点:一元二次方程根的判别式的内容及应用难点:1.一元二次方程根的判别式的推导2.利用根的判别式进行有关证明教学过程复习提问1一元二次方程的一般形式及其根的判别式是什么?2用公式法求出下列方程的解:(1)3x2x100;(2)x28x160;(3)2x26x50引入新课通过上述一组题,让学生回答出:一元二次方程的根的情况有三种,即有两个不相等的实数根;两个相等的实数根;没有实数根接下来向学生提出问题:是什么条件决定着一元二次方程的根的情况?这条件与方程的根之间又有什么关系呢?能否不解方程就可以明确方程的根的情况?这正是我们本课要探讨的课题(板书本课标题)新课先讨论上述三个小题中b24ac的情况与其根的联系再做如下推导:对任意一元二次方程ax2+bx+c=0(a0),可将其变形为a0,4a20由此可知b24ac的值的“三岐性”,即正、零、负直接影响着方程的根的情况(1)当b24ac0时,方程右边是一个正数(2)当b24ac0时,方程右边是0通过以上讨论,总结出:一元二次方程ax2bxc0的根的情况可由b24ac来判定故称b24ac是一元二次方程ax2bxc0的根的判别式,通常用“”来表示综上所述,一元二次方程ax2bxc0(a0) 当0时,有两个不相等的实数根; 当0时,有两个相等的实数根; 当0时,没有实数根反过来也成立例1.不解方程,判别下列方程根的情况:(1)2x23x40;(2)16y2924y;(3)5(x21)7x0分析:要想确定上述方程的根的情况,只需算出“”,确定它的符号情况即可例2当k取什么值时,关于x的方程2x2-(4k+1)x+2k2-1=0(1)有两个不相等的实数根;(2)有两个相等实数根;(3)方程没有实数根例3. 求证关于x的方程(k2+1)x2-2kx+(k2+4)=0没有实数根.归纳总结应用判别式解题应注意以下几点:1应先把已知方程化为一元二次方程的一般形式,为应用判别式创造条件2一元二次方程根的判别式的逆命题也是成立的布置作业:习题22.2 4题达标测试1.证明关于x的方程(x-1)(x-2)=m2有两个不相等的实数根2.已知a,b,c是ABC的三边的长,求证方程a2x2-(a2+b2-c2)x+b2=0没有实数根3.若mn,求证关于x的方程2x2+2(m+n)x+m2+n2=0无实数根4.已知,关于x的方程(a-2)x2-2(a-1)x+(a+1)0,当a为何非负整数时;.方程只有一个实数根.方程有两个相等的实数根.方程没有实数根.课后反思第六课时一元二次方程的根与系数的关系教学目的1使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会其运用2培养学生分析、观察以及利用求根公式进行推理论证的能力教学重点、难点重点:1.韦达定理的推导和灵活运用2.已知方程求关于根的代数式的值难点:用两根之和与两根之积表示含有两根的各种代数式教学过程复习提问1一元二次方程ax2bxc0的求根公式应如何表述?2上述方程两根之和等于什么?两根之积呢?新课一元二次方程ax2bxc0(a0)的两根为由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”)如果ax2bxc0(a0)的两个根是x1,x2,那么我们再来看二次项系数为1的一元二次方程x2pxq0的根与系数的关系得出:如果方程x2pxq0的两根是x1,x2,那么x1x2p,x1x2q由 x1x2p,x1x2q 可知p(x1x2),qx1x2, 方程x2pxq0,即 x2(x1x2)xx1x20这就是说,以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2(x1x2)xx1x20例1已知方程5x2kx60的一个根是2,求它的另一根及k的值例2.下列各方程两根之和与两根之积各是什么?(1)x23x180; (2)x25x45;(3)3x27x20; (4)2x23x0 练习 P42 归纳总结1本节课主要学习了一元二次方程根与系数关系定理,应在应用过程中熟记定理2要掌握定理的两个应用:.不解方程直接求方程的两根之和与两根之积;.已知方程一根求另一根及系数中字母的值布置作业:习题22.2 7题达标测试 1方程2x27xk0的两根中有一个根为0,k为何值?2.利用根与系数的关系,求一元二次方程2x23x10两根的(1)平方和;(2)倒数和课后反思第七课时二次三项式的因式分解(公式法)教学目的1使学生理解二次三项式的意义及解方程和因式分解的关系2使学生掌握用求根法在实数范围内将二次三项式分解因式教学重点、难点重点:用求根法分解二次三项式难点:1.方程的同解变形与多项式的恒等变形的区别2.二元二次三项式的因式分解教学过程复习提问解方程:1x2-x-60; 23x2-11x+100; 34x2+8x-10引入新课在解上述方程时,第1,2题均可用十字相乘法分解因式,迅速求解而第3题则只有采用其他方法此题给我们启示,用十字相乘法分解二次三项式,有时是无法做到的是否存在新的方法能分解二次三项式呢?第3个方程的求解给我们以启发新课二次三项式ax2+bx+c(a0),我们已经可以用十字相乘法分解一些简单形式下面我们介绍利用一元二次方程的求根公式将之分解的方法 易知,解一元二次方程2x2-6x+40时,可将左边分解因式,即2(x-1)(x-2)0, 求得其两根x11,x22.反之,我们也可利用一元二次方程的两个根来分解二次三项式即,令二次三项式为0,解此一元二次方程,求出其根,从而分解二次三项式具体方法如下: 如果一元二次方程ax2+bx+c0(a0)的两个根是ax2-(x1+x2)x+x1x2 a(x-x1)(x-x2)从而得出如下结论在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两根x1,x2,然后写成ax2+bx+ca(x-x1)(x-x2) 例如,方程2x2-6x+40的两根是x11,x22 则可将二次三项式分解因式,得2x2-6x+42(x-1)(x-2)例1 把4x2-5分解因式归纳总结用公式法解决二次三项式的因式分解问题时,其步骤为:1令二次三项式ax2+bx+c0;2解方程(用求根公式等方法),得方程两根x1,x2;3代入a(x-x1)(x-x2)二次三项式ax2+bx+c(a0)分解因式的方法有三种,即1利用完全平方公式;2十字相乘法:即x2+(a+b)x+ab(x+a)(x+b);acx2+(ad+bc)x+bd(ax+b)(cx+d)3求根法:ax2+bx+ca(x-x1)(x-x2),(1)当b2-4ac0时,可在实数范围内分解;(2)当b2-4ac0时,在实数范围内不能分解布置作业:对下列式子进行因式分解 2x2+6x+4. .4x2-4x+1 .-2x2-4x+3. .2x2-8xy+5y2课后反思22.3一元二次方程的应用第一课时教学目的1使学生会列出一元二次方程解应用题2使学生通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力教学重点、难点重点:由应用问题的条件列方程的方法难点:设“元”的灵活性和解的讨论教学过程复习提问1一元二次方程有哪些解法?(要求学生答出:开方法、配方法、公式法、因式分解法)2回忆一元二次方程解的情况(要求学生按0,0,0三种情况回答问题)3我们已经学过的列方程解应用题时,有哪些基本步骤?(要求学生回答:审题;设未知数;根据等量关系列方程(组);解方程(组);检验并写出答案)引入新课问题1:用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖长方形盒子试问:应如何求出截去的小正方形的边长? 解:设小正方形边长为xcm,则盒子底面的长、宽分别为(80-2x)cm及(60-2x)cm,依题意,可得(80-2x)(60-2x)1500, 即 x2-70x+8250当时,我们不会解此方程现在,可用求根公式解此方程了 x155,x215 当x55时,80-2x-30,60-2x-50; 当x15时,80-2x50,60-2X30 由于长、宽不能取负值,故只能取x15,即小正方形的边长为15cm 问题2:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应怎样剪? 分析:要解决此问题,需求出铁片的长和宽,由于长比宽多5cm,可设宽为未知数来列方程 解:设这块铁片宽xcm,则长是(x+5)cm依题意,得x(x+5)150,即x2+5x-1500 x110,x2-15(舍去) x10,x+515 答:应将之剪成长15cm,宽10cm的形状12999.com归纳总结利用一元二次方程解应用题的主要步骤仍是:审题;设未知数;列方程;解方程;依题意检验所得的根;得出结论并作答布置作业:习题22.3 1、2、3、5题课后反思第二课时教学目的使学生掌握有关面积和体积方面以及“药液问题”的一元二次方程应用题的解法提高学生化实际问题为数学问题的能力教学重点、难点重点:用图示法分析题意列方程难点:将实际问题转化为对方程的求解问题.教学过程复习提问本小节第一课我们介绍了什么问题?引入新课今天我们进一步研究有关面积和体积方面以及“药液问题”的一元二次方程的应用题及其解法新课例1 如图1,有一块长25cm,宽15cm的长方形铁皮如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面积为231cm2的无盖长方体盒子,求截去的小正方形的边长应是多少?分析:如图1,考虑设截去的小正方形边长为xcm,则底面的长为(25-2x)cm,宽为(15-2x)cm,由此,知由长宽矩形面积,可列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024福建泉州德化县妇女儿童活动中心招聘1人管理单位遴选500模拟题附带答案详解
- 个人无抵押贷款合同范例
- 企业购科研设备贷款协议书
- LED火车站照明工程合同
- 临时工代理合同模板
- 个人购建筑设备贷款协议书
- 二手挖掘机购买合同
- 个人隐私保密协议样本
- 企业培训课后服务协议
- 不得制作课件教学课件
- 五年级上册小数乘除练习300道及答案
- 高考模拟作文“‘情以物迁’与‘不以物喜不以己悲’”导写+
- 20222023学年浙江省宁波市鄞州实验中学八年级(上)期中语文试卷(解析)
- 人教版数学二年级下册德育渗透教案《统计》例2教学设计
- 超越指标:存量时代降本增效的利器
- 《中小学书法教育指导纲要》解读
- 住院医师规范化培训临床技能核课件
- 工程造价鉴定十大要点与案例分析
- 2024年金融行业发展趋势
- 印刷设计行业档案管理制度完善
- 地热资源勘查与开发利用规划编制规程
评论
0/150
提交评论