




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Matlab在复变函数中应用数学实验(一)华中科技大学数学系二七年十月MATLAB在复变函数中的应用复变函数的运算是实变函数运算的一种延伸,但由于其自身的一些特殊的性质而显得不同,特别是当它引进了“留数”的概念,且在引入了Taylor级数展开Laplace变换和Fourier变换之后而使其显得更为重要了。使用MATLAB来进行复变函数的各种运算;介绍留数的概念及MATLAB的实现;介绍在复变函数中有重要应用的Taylor展开(Laurent展开Laplace变换和Fourier变换)。1 复数和复矩阵的生成在MATLAB中,复数单位为,其值在工作空间中都显示为。1.1 复数的生成复数可由语句生成,也可简写成。另一种生成复数的语句是,也可简写成,其中theta为复数辐角的弧度值,r为复数的模。1.2 创建复矩阵创建复矩阵的方法有两种。(1)如同一般的矩阵一样以前面介绍的几种方式输入矩阵例如:(2)可将实、虚矩阵分开创建,再写成和的形式例如:;注意 实、虚矩阵应大小相同。2 复数的运算1复数的实部和虚部复数的实部和虚部的提取可由函数real和imag实现。调用形式返回复数的实部返回复数的虚部2共轭复数复数的共轭可由函数conj实现。调用形式返回复数的共轭复数3复数的模和辐角复数的模和辐角的求解由功能函数abs和angle实现。调用形式复数的模复数的辐角例:求下列复数的实部与虚部、共轭复数、模与辐角(1)(2)(3)(4)由MATLAB输入如下: %实部0.23081.50003.50001.0000 %虚部0.15382.500013.00003.0000 %共轭复数0.2308+0.1538i 1.5000+2.5000i 3.5000+13.0000i1.0000+3.0000i%模0.27742.915513.46293.1623%辐角0.58801.03041.8228-1.24904复数的乘除法复数的乘除法运算由“/”和“”实现。例 复数的乘除法演示。由此例可见,相当于,和不相等。5复数的平方根复灵敏的平方根运算由函数sprt实现。调用形式返回复数的平方根值6复数的幂运算复数的幂运算的形式为,结果返回复数的次幂。例 求下列各式的值0.8660+0.5000 i7复数的指数和对数运算复数的指数和对数运算分别由函数exp和log实现。调用形式返回复数x的以e为底的指数值返回复数x的以e为底的对数值例 求下列式的值(参见参考资料【4】P.68.215)。8复数的三角函数运算复数的三角函数运算函数参见下面的复数三角函数复数三角函数表函数名函 数 功 能函数名函 数 功 能返回复数的正弦函数值返回复数的反正弦值返回复数的余弦函数值返回复数的反余弦值返回复数的正切函数值返回复数的反正切值返回复数的余切函数值返回复数的反余切值返回复数的正割函数值返回复数的反正割值返回复数的余割函数值返回复数的反余割值返回复数的双曲正弦值返回复数的双曲余切值返回复数的双曲余弦值返回复数的双曲正割值返回复数的双曲正切值返回复数的双曲余割值9 复数方程求根复数方程求根或实方程的复数根求解也由函数solve实现。见下面的例子.例 求方程所有的根(参见参考资料【4】P.32.116)。 23 留数留数定义:设a是的孤立奇点,C是a的充分小看邻域内一条把a点包含在其内部的闭路,积分称为在a点的留数或残数,记作。在MATLAB中,可由函数residue实现。residue 留数函数(部分分式展开)函数返回留数,极点和2个多项式比值的部分分式展开的直接项。如果没有重根,则向量B和A为分子、分母以s降幂排列的多项式系数,留数返回为向量R、极点在向量P的位置,直接项返回到向量K。极点的数目。如果,则直接项系数为空;否则。如果存在M重极点即有则展开项包括以下形式有3个输入变量和2个输出变量,函数转换部分因式展开还为系数为B和A的多项式比的形式。注意:数值上讲,分式多项式的部分因式展开实际上代表了一类病态问题。如果分母多项式是一个近似有重根的多项式,则在数值上的一点微小变化,包括舍入误差都可能造成极点和留数结果上的巨大变化。因此使用状态空间和零点极点表述的方法是可取的。例 求如下函数的奇点处的留数。在MATLAB实现如下1.50000.500020 所以可得。例 计算下面的积分其中C为正向圆周。(参见参考资料【4】P.158.例2)解:先求被积函数的留数0.25000.25000.25000.0000 i0.250+0.0000 i1.00001.00000.0000+1.0000 i0.00001.0000 i 可见在圆周内有四个极点,所以积分值等于。4 Taylor级数展开Taylor级数开展在复变函数中有很重要的地位,如分析复变函数的解析性等。函数在点的Taylor级数开展为在MATLAB中可由函数taylor来实现。taylor泰勒级数展开返回函数的五次幂多项式近似。此功能函数可有3个附加参数。返回次幂多项式。返回点附近的幂多项式近似。使用独立变量代替函数。例 求下列函数在指定点的泰勒开展式(参见参考资料【4】P.143.12)。(1)(2);MATLAB实现为:例 再看下面的展开式展开式说明是此函数的伪奇点!这里的展开式运算实质上是符号运算,因此在MATLAB中执行此命令前应先定义符号变量,否则MATLAB将给出出错信息!5 Laplace变换及其逆变换1Laplace变换返回以默认独立变量T对符号函数F的Laplace变换。函数返回默认为s的函数。如果,则Laplace函数返回t的函数。其中定义L为对t的积分。以t代替s的Laplace变换。等价于。 以z代替s的Laplace变换(相对于w的积分)。等价于。例如:syms a s t w x2Laplace逆变换返回以默认独立变量s的数量符号L的Laplace变换,默认返回t的函数。如果,则ilaplace返回x的函数。定义为对s的积分;其中c为选定实数,使得的所有奇点都在直线的左侧。以y代替默认的t的函数,且有等价于。这里y是个数量符号。以x代替t的函数,等价于,对y取积分。例如:ilaplace ilaplacecosilaplace( F(6 Fourier变换及其逆变换1. Fourier积分变换F=fourier(f) 返回以默认独立变量x对符号函数f的Fourier变换,默认返回的函数。如果,则fourier 函数返回t的函数F=F(t)。定义F()int(f()*exp(为对的积分。 fourier 以代替默认值的Fourier变换,且有fourier等价于F= int。fourier 以代替且对积分,且有fourier=F()= int。 例如: fourier(1/) fourier 1/fourier 2Fourier逆变换 返回以默认独立变量对符号函数F的Fourier逆变换,默认返回的函数Fourier逆变换应用于返回的函数,即由F=F推出。如果F=F,则ifourier函数返回的函数。定义,对的积分。 以代替的函数,且有ifourier等价于对积分。 以代替的Fourier逆变换,且有=,积分针对。例如: ifourier(v/(1+w,u)ansi/(1+w*Dirac(1,u)ifourier(sym(fourier(f(x),x,w) ),w,x)ans=f(x)Matlab中复变函数命令集定义符号变量 Syms虚单位 z=Sqrt(-1)复数表示 z=x+y*i指数表示 z=r*exp(i*a)求实部 Real(z)求虚部 Imag(z)求共轭 Conj(z)求模 Abs(z)求幅角 Angle(z)三角函数 z=sin(z)z=cos(z)指数函数 z=exp(z)对数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省徐州市鼓楼区2024-2025学年三年级数学第二学期期末调研模拟试题含解析
- 湖南文理学院芙蓉学院《误差理论与数据处理》2023-2024学年第二学期期末试卷
- 浙江省杭州市拱墅区公益中学2024-2025学年初三4月质量检测试题(四)数学试题含解析
- 山东省淄博市临淄区金山中学2024-2025学年下学期初三年级期中考试英语试题试卷含答案
- 山东省青岛第二中学2024-2025学年高考第三次质量调研物理试题试卷含解析
- 重庆外语外事学院《土木工程施工与管理软件应用》2023-2024学年第二学期期末试卷
- 山东省济南历下区2024-2025学年高中毕业班第一次综合质量检查数学试题含解析
- 昆明艺术职业学院《土地管理信息系统》2023-2024学年第二学期期末试卷
- 湛江市高一上学期期末调研考试语文试题
- 乳制品企业良好生产规范
- 2025中国新型储能行业发展白皮书
- 海南省天一大联考2024-2025学年高三学业水平诊断(四)语文试题及答案
- 社会认知力测试题及答案
- 肉鸡供需合同协议网页
- 《机械制图(多学时)》中职全套教学课件
- 骆驼祥子考点单选题100道及答案解析
- 新教科版小学1-6年级科学需做实验目录
- 重症培训重症监测的基本原则和方法
- 人体红外测温仪的设计毕业设计论文
- 球墨铸铁管安装施工方案(完整版)
- 个人档案表(最新整理)
评论
0/150
提交评论