




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:第三章 函数的应用() 主备人:高一数学备课组陈伟坚编写时间:2013年11月5日 使用班级 (21)(22) 计划上课时间: 2013-2014学年第 一学期 第 12 周 星期 一至五 课标、大纲、考纲内容:课标要求教学大纲要求广东考试说明的内容1结合二次函数的图象,判断一元二次方程根的存在性及个数;体会数形结合思想与函数与方程思想的应用2理解函数零点的概念,掌握函数零点的存在性定理3能用二分法求出方程的近似解4知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想1会结合二次函数的图象,判断一元二次方程根的存在性及个数;体会数形结合思想与函数与方程思想的应用2能理解函数零点的概念,掌握函数零点的存在性定理3能用二分法求出方程的近似解4知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想1求函数的零点 2零点存在性及零点个数的判定3函数的零点与方程根的关系4利用二分法求方程的近似解5判断函数零点所在的区间及方程根的个数6精确度与近似值【教材与学情分析】1、通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。 本小节是高中新课程的新增内容,它是求方程近似解的常用方法,体现了函数的思想以及函数与方程的联系。在内容上衔接了上节函数的零点与方程的根的联系,并为数学3中算法内容的学习做了铺垫。2.学情分析 学生在学习了上小节的内容后,对方程的根的存在性有了一定的了解。在使用计算器上也不会有任何问题。主要的困难在于对这种算法的理解以及对教材中归纳的使用二分法求方程近似解一般步骤和精确度的理解。因此在教学上可设置生动的情境(比如价格竞猜)引入,来帮助学生理解二分法的实质。同时应放慢教学速度,用3课时把这些内容讲清楚。具体课时分布如下:连州市连州中学课堂教学设计表学科数学教师姓名陈伟坚授课班级高一(21)(22)授课时间2013、11、11课题31.1方程的根与函数的零点(一)计划课时1课标要求和教学目标1. 知识与技能:1.结合方程根的几何意义,理解函数零点的定义;2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.2. 过程与方法:1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。3. 情感态度与价值观在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用学情分析本节课是在学生学习了基本初等函数()的基础上,学习函数与方程的第一课时,本节课中通过对二次函数图象的绘制、分析,得到零点的概念,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节用二分法求方程的近似解做准备从教材编写的顺序来看,方程的根与函数的零点是必修1第三章函数的应用一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的方程的根与函数的零点的关系、用二分法求方程的近似解中均蕴涵了“函数与方程的思想”和“数形结合的思想”,建立和运用函数模型中蕴含的“数学建模思想”,是本章渗透的主要数学思想从知识的应用价值来看,通过在函数与方程的联系中体验数学中的转化思想的意义和价值,体验函数是描述宏观世界变化规律的基本数学模型,体会符号化、模型化的思想,体验从系统的角度去思考局部问题的思想项目内 容解决办法教学重点求函数的零点(重点)零点的概念是在分析了众多图象的基础上,由图象与轴的位置关系得到的一个形象的概念,学生可能会设法画出图象找到所有任意函数的可能存在的所有零点,但是并不是所有函数的图象都能具体的描绘出,所以在概念的接受上有一点的障碍教学难点零点存在性及零点个数的判定在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点教学方法启发式教学,探究式学习教学手段通过让学生观察、讨论、辨析、画图,亲身实践,在函数与方程的联系中体验数形结合思想、转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用教学过程设计(详细过程)【环节一:揭示意义,明确目标】揭示本章意义,指明课节目标教师活动:用屏幕显示第三章 函数的应用 3.1.1方程的根与函数的零点教师活动:这节课我们来学习第三章函数的应用。通过第二章的学习,我们已经认识了指数函数、对数函数、幂函数、分段函数等函数的图象和性质,而这一章我们就要运用函数思想,建立函数模型,去解决现实生活中的一些简单问题。为此,我们还要做一些基本的知识储备。方程的根,我们在初中已经学习过了,而我们在初中研究的“方程的根”只是侧重“数”的一面来研究,那么,我们这节课就主要从“形”的角度去研究“方程的根与函数零点的关系”。教师活动:板书标题(方程的根与函数的零点)。【环节二:巧设疑云,轻松渗透】设置问题情境,渗透数学思想教师活动:请同学们思考这个问题。用屏幕显示判断下列方程是否有实根,有几个实根?(1);(2).学生活动:回答,思考解法。教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题。对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?学生活动:思考作答。教师活动:用屏幕显示函数的图象。学生活动:观察图像,思考作答。教师活动:我们来认真地对比一下。用屏幕显示表格,让学生填写的实数根和函数图象与x轴的交点。学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。教师活动:我们就把使方程成立的实数x称做函数的零点【环节三:形成概念,升华认知】引入零点定义,确认等价关系教师活动:这是我们本节课的第一个知识点。板书(一、函数零点的定义:对于函数y=f(x),使方程f(x)=0的实数x叫做函数y=f(x)的零点)。教师活动:我可不可以这样认为,零点就是使函数值为0的点?学生活动:对比定义,思考作答。教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?学生活动:思考作答。教师活动:这是我们本节课的第二个知识点。板书(方程的根与函数零点的等价关系)。教师活动:检验一下看大家是否真正理解了这种关系。如果已知函数y=f(x)有零点,你怎样理解它?学生活动:思考作答。教师活动:对于函数y=f(x)有零点,从“数”的角度理解,就是方程f(x)=0有实根,从“形”的角度理解,就是图象与x轴有交点。从我们刚才的探究过程中,我们知道,方程f(x)=0有实根和图象与x轴有交点也是等价的关系。所以函数零点实际上是方程f(x)=0有实根和图象与x轴有交点的一个统一体。在屏幕上显示:函数y=f(x)有零点 方程f(x)=0有实数根 函数y=f(x)的图象与x轴有交点教师活动:下面就检验一下大家的实际应用能力。【环节四:应用思想,小试牛刀】数学思想应用,基础知识强化教师活动:用屏幕显示求下列函数的零点.学生活动:由四位同学分别回答他们确定零点的方法。画图象时要求用语言描述4个图象的画法;教师活动:根据学生的描述,在黑板上作出图象(在接下来探究零点存在性定理时,图象会成为同学们思考问题的很好的参考)。教师活动:我们已经学习了函数零点的定义,还学习了方程的根与函数零点的等价关系,在这些知识的探究发现中,我们也有了一些收获,那我们回过头来看看能不能解决的根的存在性问题?学生活动:可受到化归思想的启发应用数形结合进行求解。教师活动:用屏幕显示学生所论述的解题过程。这种解法充分运用了我们前面的解题思想,将未知问题转化成已知问题,将一个图象不会画的函数转化成了两个图象都会画的函数,利用两个函数图象的交点解决实根存在性问题。看来我们的探究过程是非常有价值的。教师活动:如果不转化,这个问题就真的解决不了么?现在最棘手的问题是y=的图象不会画,那我们能不能不画图象就判断出零点的存在呢?【环节五:探究新知,思形想数】探究图象本质,数形转化解疑教师活动:我们看到,当函数图象穿过x轴时,图象就与x轴产生了交点,图象穿过x轴这是一种几何现象,那么如何用代数形式来描述呢?用屏幕显示的函数图象,多次播放抛物线穿过x轴的画面。学生活动:通过观察图象,得出函数零点的左右两侧函数值异号的结论.教师活动:好!我们明确一下这个结论,函数y=f(x)具备什么条件时,能在区间(a,b)上存在零点?学生活动:得出f(a)f(b)0的结论。教师活动:若f(a)f(b)0,函数yf(x)在区间(a,b)上就存在零点吗?学生活动:可从黑板上的图象中受到启发,得出只有在a,b上连续不断的函数,在满足f(a)f(b)0的条件时,才会存在零点的结论。【环节六:归纳定理,深刻理解】初识定理表象,深入理解实质教师活动:其实同学们无形之中已经说出了我们数学中的一个重要定理,那就是零点存在性定理。这是我们本节课的第三个知识点。板书(三、零点存在性定理)。教师活动:用屏幕显示函数零点存在性定理:如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a) f(b)0,那么,函数y=f(x)在区间(a,b) 内有零点 即存在c(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根教师活动:这个定理比较长,找个同学给大家读一下,让大家更好地体会定理的内容。学生活动:读出定理。教师活动:大家注意到了么,定理中,开始时是在闭区间a,b上连续,结果推出时却是在开区间(a,b)上存在零点。你怎样理解这种差异?学生活动:思考作答。教师活动:虽然我们已经得到了零点存在性定理,但同学们真的那么坦然么?结合黑板上的图象,再结合定理的叙述形式,你对定理的内容可有疑问?学生活动:通过观察黑板上的板书图象,大致说出以下问题:1.若函数y=f(x)在区间a,b上连续,且f(a)f(b)0,则f(x)在区间(a,b)内就一定没有零点么?3.在什么条件下,函数yf(x)在区间(a,b)上可存在唯一零点?教师活动:那我们就来解决一下这些问题。学生活动:通过黑板上的图象举出反例,得出结论。1.若函数y=f(x)在区间a,b上连续,且f(a)f(b)0,则f(x)在区间(a,b)内也可能有零点。3.在零点存在性定理的条件下,如果函数再具有单调性,函数yf(x)在区间(a,b)上可存在唯一零点。【环节七:应用所学,答疑解惑】把握理论实质,解决初始问题教师活动:现在我们不用画出图象也能判断函数零点是否存在,存在几个了。那解决的根的存在性问题应该是游刃有余了。用屏幕显示判断下列方程是否有实根,有几个实根?(2)学生活动:通过对零点存在性的探究和理解,表述该问题的解法。 【环节八:归纳总结,梳理提升】总结基础知识,提升解题意识教师活动:本节课的知识点已经在黑板上呈现出来了,但最重要的,也是贯穿本节课始终,起到灵魂作用的却是三大数学思想,即化归与转化的数学思想,数形结合的数学思想,函数与方程的数学思想.数学思想才是数学的灵魂所在,也是数学的魅力所在,对我们解决问题起着绝对的指导作用。愿我们每个同学在今后的学习中体味、感悟、应用、升华!【环节九:理论内化,巩固升华】整理思想方法,灵活应用解题1.函数f(x)=x(x2-16)的零点为( ). (0,0),(4,0) .0,4 . (4,0),(0,0),(4,0) .4,0,42.已知函数f(x)是定义域为的奇函数,且f(x)在上有一个零点,则f(x)的零点个数为( ) . . . .不确定3.已知函数f(x)的图象是连续不断的,有如下对应值表:x1 2 3 4 567f(x)23 97 1151226那么函数在区间1,6上的零点至少有( )个 A.5个 B.4个 C.3个 D.2个4.函数f(x)= x3 3x + 5的零点所在的大致区间为( )A.( 2 ,0) B. (1,2) C. (0,1) D. (0,0.5) 【环节十:布置作业,举一反三】延伸课堂思维,增强应用意识 有2个零点;3个零点;4个零点.板书设计课题:1.提出问题:2.问题探索3.例题分析:4.抽象概括:5.练习:投影:巩固练习题组1 1.函数的零点是()A(-1,0) B.(3,0) C.x=3 D -1和32.函数的零点是()A 1 B 2 C 3 D 不确定题组2 已知函数 (1)m为何值时,函数有两个零点? (2)若函数恰有一个再远点右侧,求m的值教学反思方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,但要让学生能够真正理解,教学还需要妥善处理其中的一些问题。首先要让学生认识到学习函数的零点的必要性其次教学要把握内容结构,突出思想方法像这些中学新增内容的教学,教学就要取得成功的确不易,需要一个不断实践以及实践后的反思的过程,在实践与反思的过程中,不仅要妥善解决上述问题,还要不断地发现和解决新的问题,这样,教学效果才会逐步得到改善。连州市连州中学课堂教学设计表学科数学教师姓名陈伟坚授课班级高一(21)(22)授课时间2013、11、12课题31.1方程的根与函数的零点(二)计划课时1课标要求和教学目标1. 知识与技能:1能够结合二次函数的图象判断一元二次方程根的存在性及根的个数2理解函数的零点与方程根的关系3掌握函数零点的存在性的判定方法2、过程与方法:1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。3、 情感态度与价值观在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用学情分析学生在上一节课通过学习已经能结合二次函数的图象,初步会判断一元二次方程根的存在性及个数;本节课旨在进一步理解函数零点的概念,进而掌握函数零点的存在性定理项目内 容解决办法教学重点求函数的零点(重点)零点的概念是在分析了众多图象的基础上,由图象与轴的位置关系得到的一个形象的概念,学生可能会设法画出图象找到所有任意函数的可能存在的所有零点,但是并不是所有函数的图象都能具体的描绘出,所以在概念的接受上有一点的障碍教学难点零点存在性及零点个数的判定在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点教学方法讲练结合,适时点拨教学手段多媒体课件、投影仪教学过程设计(详细过程)一、求函数的零点例1求下列函数的零点:(1)f(x)x22x3;(2)f(x)x41;(3)f(x)x34x.解(1)由于f(x)x22x3(x3)(x1)所以方程x22x30的两根是3,1.故函数的零点是3,1.(2)由于f(x)x41(x21)(x1)(x1),所以方程x410的实数根是1,1,故函数的零点是1,1.(3)令f(x)0,即x34x0,x(x24)0,即x(x2)(x2)0.解得:x10,x22,x32,所以函数f(x)x34x有3个零点,分别是:2,0,2.点评求函数的零点,关键是准确求解方程的根,若是高次方程,要进行因式分解,分解成多个因式积的形式且方程的另一边为零,若是二次方程常用因式分解或求根公式求解变式迁移1若函数f(x)x2axb的零点是2和4,求a,b的值解2,4是函数f(x)的零点f(2)0,f(4)0.即,解得.二、判断函数在某个区间内是否有零点例2(1)函数f(x)lnx的零点所在的大致区间是()来源:A(1,2)B(2,3)C.和(3,4) D(e,)(2)f(x)lnx在x0上共有_个零点来源: 分析由题目可获取以下主要信息:本例为判断函数零点所在区间问题,且在选项中给出了待确定的区间解答本题可从已知区间求f(a)和f(b),判断是否有f(a)f(b)0,且注意该函数在定义域上为增函数答案(1)B(2) 1解析(1)f(1)20,f(2)ln210,f(2)f(3)0上是增函数,故f(x)有且只有一个零点点评这是一类非常基础且常见的问题,考查的是函数零点的判定方法,一般而言只需将区间端点代入函数求出函数值,进行符号判断即可得出结论,这类问题的难点往往是函数符号的判断,可运用函数的有关性质进行判断,同时也要注意该函数的单调性变式迁移2方程x23x10在区间(2,3)内根的个数为()A0B1C2D不确定答案B解析令f(x)x23x1,则f(2)f(3)0,(2,3)内仅有一个根三、已知函数零点的特征,求参数范围例3若函数f(x)ax2x1仅有一个零点,求实数a的取值范围分析由题目可获取以下主要信息:已知函数f(x)零点特征,讨论函数表达式中字母的特征,解答本题可根据该字母对函数零点的影响入手,进行求解解若a0,则f(x)x1,为一次函数,易知函数仅有一个零点;若a0,则函数f(x)为二次函数,若其只有一个零点,则方程ax2x10仅有一个实数根,故判别式14a0,a.综上,当a0或a时,函数仅有一个零点变式迁移3已知在函数f(x)mx23x1的图象上其零点至少有一个在原点右侧,求实数m的范围解(1)当m0时,f(0)3x1,直线与x轴的交点为,即函数的零点为,在原点右侧,符合题意图(1)(2)当m0时,f(0)1,抛物线过点(0,1)若m0,f(x)的开口向上,如图(2)所示,要使函数的零点在原点右侧,当且仅当94m0即可,解得0m,综上所述,m的取值范围为.1函数f(x)的零点就是方程f(x)0的根,但不能将它们完全等同如函数f(x)x24x4只有一个零点,但方程f(x)0有两个相等实根2并不是所有的函数都有零点,即使在区间a,b上有f(a)f(b)0,也不说明函数yf(x)在区间(a,b)上无零点,如二次函数yx23x2在0,3上满足f(0)f(3)0,但函数f(x)在区间(0,3)上有零点1和2.3函数的零点是实数而不是坐标轴上的点板书设计课题:1.知识回顾:2.例题分析:3.抽象概括:4.练习:投影:巩固练习基础巩固性习题1、函数的零点为 ( )A、7 B、 C、 D、-72、方程的一个实数解的存在区间为 ( )A、(0,1) B、(0,2) C、(1,2) D、(-1,1)3、函数在区间(1,2)内的函数值为 ( )A、大于等于0 B、小于等于0 C、大于0 D、小于0 4、若函数唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下列命题中错误的是()A、函数在(1,2)或内有零点B、函数在(3,5)内无零点C、函数在(2,5)内有零点D、函数在(2,4)内不一定有零点5、设函数在区间上连续,若满足_,若方程在区间上一定有实根。6、方程的实数解的个数为_。二、能力提升性习题7、 设函数与的图像的交点为,则所在的区间是( )A、 (0,1) B、(1,2) C、(2,3) D、(3,4)8、 函数有三个零点,则实数的值为 。9、 已知函数(1) 为何值时,函数的图像与轴有两个交点?(2) 如果函数的一个零点在原点,求的值。教学反思求函数的零点,关键是准确求解方程的根,若是高次方程,要进行因式分解,分解成多个因式积的形式且方程的另一边为零,若是二次方程常用因式分解或求根公式求解函数零点的判定方法,只需将区间端点代入函数求出函数值,进行符号判断即可得出结论,这类问题的难点往往是函数符号的判断,可运用函数的有关性质进行判断,同时也要注意该函数的单调性连州市连州中学课堂教学设计表学科数学教师姓名陈伟坚授课班级高一(21)(22)授课时间2013、11、13课题3.1.2用二分法求方程的近似解计划课时1课标要求和教学目标1.知识与技能:让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2.过程与方法:了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想.4. 情感态度与价值观回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣.学情分析学生已初步理解了函数图象与方程的根之间的关系,具备一定的用数形结合思想解决问题的能力,这为理解函数零点附近的函数值符号提供了知识准备。但学生仅是比较熟悉一元二次方程解与函数零点的关系,对于高次方程、超越方程与对应函数零点之间的联系的认识比较模糊,计算器的使用不够熟练,这些都给学生学习本节内容造成一定困难。项目内 容解决办法教学重点二分法原理及其探究过程,用二分法求方程的近似解师生共同探讨交流,引出借助函数f(x)=2x+3x-7的图象,能够缩小根所在区间,并根据f(1)0,可得出根所在区间(1,2);引发学生思考,如何进一步有效缩小根所在的区间;共同探讨各种方法,引导学生探寻出通过不断对分区间,有助于问题的解决;教学难点对二分法原理的探究,对精确度、近似值的理解用图例演示根所在区间不断被缩小的过程,加深学生对上述方法的理解;引发学生思考在有效缩小根所在区间时,到什么时候才能达到所要求的精确度.教学方法 “问题驱动”和启发探究式教学方法学法指导: 分组合作、互动探究、搭建平台、分散难点教学手段教学手段: 计算机、投影仪、计算器教学过程设计(详细过程)导入新课思路1.(情景导入)师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔10元降低报价.生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价.如果低了,每50元上升;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价师:在现实生活中我们也常常利用这种方法.譬如,一天,我们华庄校区与锡南校区的线路出了故障,(相距大约3 500米)电工是怎样检测的呢?是按照生1那样每隔10米或者按照生2那样每隔100米来检测,还是按照生3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的回答,我们可以用一个动态过程来展示一下(展示多媒体课件,区间逼近法).思路2.(事例导入)有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的办法)解:第一次,两端各放六个球,低的那一端一定有重球.第二次,两端各放三个球,低的那一端一定有重球.第三次,两端各放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?推进新课新知探究提出问题解方程2x-16=0.解方程x2-x-2=0.解方程x3-2x2-x+2=0.解方程(x2-2)(x2-3x+2)=0.我们知道,函数f(x)=lnx+2x-6在区间(2,3)内有零点.进一步的问题是,如何找出这个零点的近似值?“取中点”后,怎样判断所在零点的区间?什么叫二分法?试求函数f(x)=lnx+2x-6在区间(2,3)内零点的近似值.总结用二分法求函数零点近似值的步骤.思考用二分法求函数零点近似值的特点.讨论结果:x=8.x=-1,x=2.x=-1,x=1,x=2.x= ,x= ,x=1,x=2.如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围.“取中点”,一般地,我们把x= 称为区间(a,b)的中点比如取区间(2,3)的中点2.5,用计算器算得f(2.5)0,因为f(2.5)f(3)0,所以零点在区间(2.5,3)内.对于在区间a,b上连续不断且f(a)f(b)0的函数y=f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).因为函数f(x)=lnx+2x-6,用计算器或计算机作出函数f(x)=lnx+2x-6的对应值表.x123456789f(x)-4-1.3061.09863.38635.60947.79189.945912.079414.1972由表可知,f(2)0,则f(2)f(3)0,这说明f(x)在区间内有零点x0,取区间(2,3)的中点x1=2.5,用计算器算得f(2.5)-0.084,因为f(2.5)f(3)0,所以x0(2.5,3).同理,可得表(下表)与图象(如图3-1-2-1).区间中点的值中点函数的近似值(2,3)2.5-0.084(2.5,3)2.750.512(2.5,2.75)2.6250.215(2.5,2.625)2.56250.066(2.5,2.5625)2.53-1-2-5-0.009(2.53-1-2-5,2.5625)2.5468750.029(2.53-1-2-5,2.546875)2.53906250.010(2.53-1-2-5,2.5390625)2.535156250.001图3-1-2-1由于(2,3)(2.5,3)(2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小(见上表).这样,在一定的精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值.特别地,可以将区间端点作为函数零点的近似值.例如,当精确度为0.01时,由于|2.5390625-2.53-1-2-5|=0.00781250.01,所以,我们可以将x=2.53-1-2-5作为函数f(x)=lnx+2x-6零点的近似值.给定精度,用二分法求函数f(x)的零点近似值的步骤如下:1确定区间a,b,验证f(a)f(b)0,给定精度.2求区间(a,b)的中点c.3计算f(c):a.若f(c)=0,则c就是函数的零点;b.若f(a)f(c)0,则令b=c此时零点x0(a,c);c.若f(c)f(b)0,则令a=c此时零点x0(c,b).4判断是否达到精度;即若|a-b|,则得到零点值a(或b);否则重复步骤24由函数的零点与相应方程的关系,我们可用二分法来求方程的近似解.由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.应用示例例1借助计算器或计算机用二分法求方程2x+3x=7的近似解(精确度为0.1).活动:师生共同探讨交流,引出借助函数f(x)=2x+3x-7的图象,能够缩小根所在区间,并根据f(1)0,可得出根所在区间(1,2);引发学生思考,如何进一步有效缩小根所在的区间;共同探讨各种方法,引导学生探寻出通过不断对分区间,有助于问题的解决;用图例演示根所在区间不断被缩小的过程,加深学生对上述方法的理解;引发学生思考在有效缩小根所在区间时,到什么时候才能达到所要求的精确度.学生简述上述求方程近似解的过程.解:原方程即2x+3x-7=0,令f(x)=2x+3x-7,用计算器或计算机做出函数f(x)=2x+3x-7的对应值表与图象(3-1-2-2).x012345678f(x)-6-2310214075142273图3-1-2-2观察图表可知f(1)f(2)0,说明这个函数在区间(1,2)内有零点x0.取区间(1,2)的中点x=1.5,用计算器算得f(1.5)0.33.因为f(1)f(1.5)0,所以x0(1,1.5).再取区间(1,1.5)的中点x=1.25,用计算器算得f(1.25)-0.87.因为f(1.25)f(1.5)0,所以x0(1.25,1.5).同理,可得,x0(1.375,1.5),x0(1.375,1.4375).由于|1.375-1.437 5|=0.06250.1,所以,原方程的近似解可取为1.4375.例2利用计算器,求方程x2-2x-1=0的一个近似解(精确度0.1)活动:教师帮助学生分析:画出函数f(x)=x2-2x-1的图象,如图3-1-2-3所示.从图象上可以发现,方程x2-2x-1=0的一个根x1在区间(2,3)内,另一个根x2在区间(-1,0)内.根据图象,我们发现f(2)=-10,这表明此函数图象在区间(2,3)上穿过x轴一次,即方程f(x)=0在区间(2,3)上有唯一解.图3-1-2-3计算得f( )= 0,发现x1(2,2.5)(如图3-1-2-3),这样可以进一步缩小x1所在的区间.解:设f(x)=x2-2x-1,先画出函数图象的简图,如图3-1-2-3.因为f(2)=-10,所以在区间(2,3)内,方程x2-2x-1=0有一解,记为x1.取2与3的平均数2.5,因为f(2.5)=0.250,所以2x12.5.再取2与2.5的平均数2.25,因为f(2.25)=-0.437 50,所以2.25x12.5.如此继续下去,得f(2)0 x1(2,3),f(2)0 x1(2,2.5),f(2.25)0 x1(2.25,2.5),f(2.375)0 x1(2.375,2.5),f(2.375)0 x1(2.375,2.437 5).因为2.375与2.437 5精确到0.1的近似值都为2.4,所以此方程的近似解为x12.4.板书设计课题:1.提出问题:2.问题探索3.例题分析:4.抽象概括:5.练习:投影:巩固练习1. 方程4x+2x-11=0的解在下列哪个区间内?你能给出一个满足精确度为0.1的近似解吗? A (0,1) B (1,2) C (2,3) D (3,4)2. 下列函数的图像与x轴均有交点,其中不能用二分法求其零点的是( )教学反思以问题为教学出发点 注重与现实生活中案例相结合 注重学生参与知识的形成过程 恰当地利用现代信息技术课题:连州中学20132014学年第一学期期中考试高一数学试题评讲主备人:高一数学备课组陈伟坚 编写时间:2013年11月11日 使用班级(21)(22) 计划上课时间: 2013-2014学年第 一学期 第 11 周 星期 四、五 连州中学20132014学年第一学期期中考试高一数学试题本试卷共20小题,满分150分,考试用时120分钟【学习目标】1、此份试题难度不大,但是学生第一次接触综合性试题,思路上没有反应过来。今后还要加强学生的知识的综合运用能力。2、学习用图象的直观解决函数的有关问题。3、通过计算题提高学生的运算能力。4、函数的定义域、值域、单调性、奇偶性在指数函数中的综合运用。【教学重难点】 1. 教学重点:运算能力的提高 2. 教学难点:函数性质的综合应用【教学过程设计】第卷(选择题 50分)一选择题(本大题共10小题,每小题只有一个正确答案,每小题5分,满分50分)1.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目方案编制的要点与技巧
- 2025至2030中国旅游保险行业深度发展研究与企业投资战略规划报告
- 房地产项目经理的素质与能力
- 2025至2030中国手持无线吸尘器行业发展趋势分析与未来投资战略咨询研究报告
- 德克士的员工福利制度
- 城市更新项目的房地产开发策略
- 结节性硬化症根治术全程还原
- 英语习语中的文化内涵及其用法教学教案
- 英美文学比较:大二英语高级阅读课程教案
- 小学词汇学习:食物相关词汇积累与运用教学教案
- 《电能计量装置安装接线规则》
- MOOC 管理学-电子科技大学 中国大学慕课答案
- 2023年海南省中考历史试卷(含答案与解析)
- 2024年江苏法院书记员招聘笔试参考题库附带答案详解
- 光伏运维技能大赛考试题库及答案
- 工程伦理-工程案例分析
- 2023-2024部编版语文五年级上册第二单元统整教学设计
- 2025年4月自考27007应用文写作押题及答案
- 香水广告案例分析
- The-Art-of-War-孙子兵法-大学英语-学生讲课实践的课件
- 电线电缆产品生产许可证实施细则样本
评论
0/150
提交评论