外文翻译-一个可追溯基于MSP430和bq76pl536a的电池管理系统设计_第1页
外文翻译-一个可追溯基于MSP430和bq76pl536a的电池管理系统设计_第2页
外文翻译-一个可追溯基于MSP430和bq76pl536a的电池管理系统设计_第3页
外文翻译-一个可追溯基于MSP430和bq76pl536a的电池管理系统设计_第4页
外文翻译-一个可追溯基于MSP430和bq76pl536a的电池管理系统设计_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

外文资料ATraceableBatteryManagementSystemDesignBasedonMSP430andBQ76PL536AAbstractAnbatterymanagementsystembasedonMSP430andBQ76PL536Aisdevelopedinthispaper.Ithasseveralsignificantfunctioninthisdesign,whichusingampere-hourintegrationmethodwithtemperatureandcurrentcorrectionasasimpleandeffectivealgorithmforSOC,usingthefullcharge-dischargeandthecirclesforSOH,usingSDcardforusinginformationrecordingfortrace.ItusingCANbuscommunicationbetweenMSP430andcontroller,usingUSBcommunicationbetweenMSP430andcomputer.Ithasvoltageandtemperaturemonitoring,batteryequalization,chargeanddischargeprotection,etc.1.INTRODUCTIONWiththedevelopmentoftechnologyandtheurgentneedforenvironmentalprotection,thenewenergyhasbecomeanexplicitnationalstrategy.Lithiumbatteryisanewkindofrechargeablebattery,whichhashighenergydensityandlonglifemakeitverysuitableforpracticalapplications:electricvehicles,backuppowerandphotovoltaicinverter,providingtheconvenientfortheseindustrialapplicationsandpowerrequirements,inreference1thesearementionedWiththerapiddevelopmentofelectricvehicles,thebatteryhasbecomethebottleneckinthedevelopmentofelectricvehiclesThelithiumbatteryisthehopeofelectricvehicles,butthelifeandsafetyofthebatteryhavethedisadvatangeofmorefragilethanothertypebatteries.Itputsforwardahigherrequesttothechargeanddischargecircuit.BatterymanagementsystemisoneofthekeytechnologiesaboutelectricvehiclespracticalAsaimportantfunctionofbatterymanagementsystem,thebatteryremainingcapacityandhealthestimationplayanimportantroleinthevehiclescommercializationEstimationonthestateofcharge(SOC)andstateofhealth(SOH)alwaysbeenimportantpartsinbatterymanagementresearch.Highperformancebatterymanagementsystem(BMS)isabletoallowthebatteryworksinthebestcondition,canimprovethebatterysreliabilityandextentitsworkinglifethroughtheaccuratebatterySOCandSOHestimation.Atthesametime,thevoltage,currentandtemperatureofthebatterymustbemeasuredtoensurethesafetyoperationofthepack,toimprovetheperformanceofthepack.Therefore,batterymanagementtechnologyresearchmakesgreatsignificanceThispaperproposesanewbatterymanagementsystem,whichisbasedonthemsp430andBQ76PL536A.Thissystemcanbeappliedtodataacquisition,theSOCandSOHestimation,batteryequalizationcontrol,datarecording,datacommunication,faultdiagnosisforthepack.Itcanuploadtheinformationtothecontroller,computerandothersystem.Thecomputercanusetheinformationtoimprovethebatteryperformanceandpackingtechnology.Thecontrollercanusetheinformationtogivetheuserusingadvicetoimprovethelifeofbatteryandgivetheusergoodusingfeel.2.CONTENTSAsinreference2,theBQ76PL536Aisastackablethreetosixseriescelllithiumbatterypackprotectorandanalogfrontendthatincorporatesaprecisionanalog-to-digitalconverter,independentcellvoltageandtemperaturemeasureandprotection;cellbalancing,andaregulatortopowerusercircuitry.Itcanmeasurebatterycellvoltagewithhighandaccuracyandspeed.Ifthebatterypackconsistingofmorethan6batteryinseriesneedsmuti-BQ76PL536Atomanageit.Andthechipsareconnectedwithcascade.AccordingtothedatasheetofBQ76PL536A,inthepapertaketwochipsforexample,itsstructureshowninFig.1.ThesystemisconsistofseveralBQ76PL536A,amicocontrollerMSP430F4152,electroniccomponent.InthesystemaBQ76PL536Acanmoniter6seriesbaterries,itcanbeconnectedwithcascade,thesystemcanmoniterupto192seriesbatteries.BQ76PL536AcancommunicateusingSPIbusandIOwithmicocontroller.ThecommunicationbetweenBQ76536Ausingcurrentmode,thiscanreducetheparasiticcapacitancesadverseeffectsonthecommunicationspeed.InthesystemBQ76PL536Aprovidevoltagemeasurement,batteryprotection(overvoltage,undervoltageandthermalprotection)andbatteryequalizationcontrol.TheMSP430canacquirethemeasureinformationandbringonthefaultdiagnosis.Itcanprovidebatteryequalizationcontrol,SOCandSOHestimation,communicatewithcontroller,computerandotherontoprovidethebatteriescurrentstate,recordingtheusinginformationandfault.B.DesignofVoltageandTemperatureMeasureCircuitInthebatterymanagementsystem,accordingtothedatasheetofBQ76PL536AinRef.2,thecircuitforvoltageandtemperaturemeasureisdesignedshowninFig.2.Inthecircuitthefiltercircuitcomposedofcapacitanceandresistance.Thevalueofresistanceis1kOhm,thevalueofthecapcitanceis0.1uF.Ref.2givetheusemethodfortheuser.Inthesystem,theunusedVCxinputsshouldbeconnectedtothenextVCxinputdownuntilaninputconnecttoacellreached.Ifastackhasfourcells,VC6connectstoVC5,whichconnectstoVC4.Inthesystem,therearetwomethodsavailabletostartabatteryvoltage,temperaturemeasure.TheCONV_Hpinmaybesetted,orthefirmwarecansettheCONVERT_CTRL-CONVbit.TheADCconversiontimeisfixedatapproximately6usperconvertedchannel,atthesametime,another6usoverheadatthestartofconversionisneeded.Sothetimeofoneconversioncanbecalculated.Ifthehardwarestartisused,asingleinterfacepin(CONV_H)isusedforconversionstartcontrolbythehost.AconversioncycleisstartedbyahardwaresignalwhenCONV_Histransitionedlow-to-highbythehost.Thehostshouldholdthisstateuntiltheconversioncycleiscompletetoavoiderroneousedgescausingaconversionstartwhenthepresentconversionisnotcomplete.ThesignalissimultaneouslysenttothehigherdeviceinthestackbytheassertionoftheCONV_Nsignal.TheBQ76PL536AautomaticallysequencesthroughtheseriesofmeasurementsenabledviatheADC_CONTROLregisterafteraconvertstartsignalisreceivedfromeithertheregisterbitorthehardwarepin.Ifthefirmwarestartisuedinthesystem,theCONVERT_CTRLCONVbitisalsousedtoinitiateaconversionbywritingabit1tothebit.Itisautomaticallyresetattheendofaconversioncycle.Thebitmayonlybewrittentobit1,theICalwaysresetsitto0.Thebrodcastformofpacketisrecommendedtostartalldeviceconversionssimultaneously.InFig.2thetemperaturecanbemeasuredusingtheTS1+,TS1-differentialinputpinswiththeADC.Theinputisdrivenbyanexternalthermistorandresistordividernetwork.TheTS+andTS-inputsaredrivedbytheREG50andinternallyconnectedwithADCreferanceduringconversions.ThisproducesaratiometricADresulteliminatestheneedforcompensationorcorrectionoftheREG50voltagedriftwhenusedtodivethetemperaturesensor.TherearetwocontrolbitsarerequiredfortheADCtostarttemperatureconvert.TocausetheADCconverttheTSnchannelonthenextrequestedconversionADC_CONTROL-TSnmustbesetted.IO_CONTROLTSnissettocausetheFETswitchconnectingtheTSn-inputtoVSStoclose,completingthecircuitofthevoltagedivider.TheIO_CONTROLbitsshouldonlybesetasneededtoconservepower,becausethermistorexcitationcurrentmayberelativelthigh.C.TheDesignofBatteryEqualizationCircuitTherearetwokindsofbatteryequalizationmethod,passivemethodandactivemethod.Inthepassivemethodafixedshuntingresistorisusedinparallelwitheachindividualcellinthepack,andthecurrentispartiallyortotallybypassedfromthecellsinordertolimitorreducethecellsvoltages.Thismethodiscontinuouslybypassingcurrentandwastingenergy.However,thismethodisreliable,sointhispaperthepassivemethodisused.Inthesystem,BQ76PL536AhassixdedicatedoutputsthatcanbeusedtocontrolexternalN-FETsaspartofacellbalancingsystem.TheimplementationofappropriatealgorithmsiscontrolledbyMSP430.TheCB_CTRL-CBAL1-6bitscontrolthestateofeachoftheoutputs.TheoutputsarecopiedfromthebitstateoftheCB_CTRLregister,forexamplebit1inthisregisteractivatestheexternalbalanceFETbyplacingahighontheassociatedpin.TheCBxpinsswitchbetweenapproximatelythepositiveandnegativevoltagesofthecellacrosswhichtheexternalFETisconnected.Thisallowstheuseofasmall,low-costN-FETinserieswithapowerresistortoprovidebatteryequalization.TheCBxoutputsareclearedwhentheinternalsafetytimerexpires.Theinternalsafetytimer(CB_TIME)valueisprogrammedinunitsofsecondsorminuteswithanaccuracyof10%.ThebasicequalizationcircuitisshowninFig.2.Toincreasethebalancecurrent,asmallpackageMOSFETisused.Topreventbatterypackoverheating,a50Ohmresistorwith2512packageisused.Inthecircuit,therealsohastwoZenerdiodetopreventthefailureofMOSFET.TheequalizationcircuitwithbigcurrentisshowninFig.3.D.TheAmpere-HourIntegrationMethodWithTemperatureandCurrentEfficiencyCorrectionAlthoughtheLi-ionbatteryhasawildtemperaturerangeforusing,buttheambienttemperaturehasagreatinfluenceonthestateofbattery.TheexperimentaldatashowthatthetemperatureisanimportantfactoraffectingthebatterySOCestimation,whichmainlyaffecttheelectromigrationrateofelectrolyteandtheactivityofelectrode.Reference4givetheexperimentdata,sotheinformationisusedinthepaper.Inthechargingexperiment,adjustthethermostattodifferenttemperature,chargingthebatteryusingconstantcurrentlimitingvoltagemethod.Thechargingcureentis40A,thelimitofvoltageischangenedwithtemperatureatabout425-4.45V.Fromtable,whiththetemperaturedecrease,thecapacityofthebatteryisreduced,atthesametimethechargingtimeincreasedsignificantly.Comparethelowtemperature(-25)withroomtemperature(25)atthesameend,withthesamechargingcurrent,thecapacitycanbefilledwillreduce25%30%.Theratedcapacityoflithiumbatteriesis200Ah.ThebatterychargingparametersunderdifferenttemperatureasshowninTable.Formthetable,thecapacityoflithiumbatteryiseffectbytemperaturecanbeobtained.Inthedischargingexperiment,thelithiumbatterywithratedcapacityof200Ahisused.Underthetemperatureof20,chargethebatteryfull.Thedischargingexperimentisbringonunder-20,0and20.Inthefirststagedischargingthebatteryat100A(0.5C)to2.5V,inthesecondstagedischargongthebatteryat80A(0.4C)tothesamevoltagediffstandard,inthethirdstagedischargingthebatteryusing60A(0.3C).Also,using40A,20A,10Adischargethebattery.ThedischargeresultsisinTableThefollowingconclusionscanbedrawnfromtable,charingthebatteryunderroomtemperature,dischargingthebatteryunderdifferenttemperature,thebatterycapacitychangesverylittle.Butlowtemperaturehassomeinfluenceonthebatterycanbereleasedenergy.Sothetemperatureisaveryimportantparametertolithiumbattery.ThetemperaturecanaffectthelithiumbatterySOCestimationaccuracyseriously.Tosimplifythediffcultyofcorrection,inthedesignusingtheequation(1)tooptimizeofSOCestimationalgorithm。SointhedesigntheSOCestimationinthechargingmustcorrectusingthetemperature.Theconditionisalsooccurredinthedischargingprocess.Inthedesign,theexperienceequation(1)isusedforcompensationeffectsintheuse:TheTistemperaturein(1),QTisthebatterycapacityatTtemperature,Q25isthecapacityat25,Q25asthestandardcapacity,kTisthetemperaturecoefficient,itoftentake0.006-0.008generally.Inthedesign,thebatterySOCiscorrectedbyusingAhintegralcombinedtemperaturethoughtheequation(1),toimprovetheaccuracyoftheSOCcalculation.E.TheEstimationofSOH.TheSOHofbatteryischangedwiththedegreeofagingofthebattery.Theoretically,itwasmeasuredbybatteryscapacity.Inthispaperitwassimplified.Itwasmeasuredusingfullchargeanddischargemethod.ThefullchargeanddischargeisjudgedbyMSP430.Atthesametime,thecumulativedischargedcapacityofthebatteryismeasured,whenthebatteryreleasecapacityreached80%asbatteryacycle,thenthecyclesisusedforSOHestimatecorrection.Reference4hasgivethereseachonpackslifewithdifferentcondition.Theexperimentalmethodis:1.Withthetemperatureof205.Firstchargethebatteryusingconstantcurrentwith1C(A)to3.65V.Thendischargethebatteryusing1C(A)totheendofdischargevoltage2.0V.Attheendofcharginganddischarging,setasidethebatteryfor1hourstoreachsteadystate.2.Intheexperiment25chargedischargeperiodisacycle,aftereachcyclethereisafulldischargecapacity,thenrecordthedischargecapacity.Ifthebatterydischargecapacityafteraperiodoflessthan80%ofratedcapacityofthebattery,itwillstop.Aftermanyexperiments,thebatterycycleliferesultsinthenormaltemperature.Figure4isthebatterycyclelifeincompletechargeanddischargetheattenuationcurves,ascanbeseenfromthegraph,thebatterycapacitydeclinewiththeincreaseofthenumberofcycles,thetwoarealmostlinearrelationship.Fig.4.ThetrendofgeneralcyclelifeInFig.4thecurvewasfittedusingquadraticfunction,andthefittingformulawasexpressedusing(8).WhereCisthebatterycapacity,Nisthecyclesofthebatteryusing.Aisbatteryratedcapacity,R2isthefittingcorrelationcoefficient.ThesoftwaredesignofBMSmainlyconsistsofprogrammodules,suchastheinitializationmodule,themainprogrammoduleandtheinterruptfunctioncausedbyfaultevent.Becausethebatterymanagementsystemhasacompletedatalogging,inthepaperthedataforrecordingisdesigningasFig.5shownintheflow.InthesystemtheSDcardisusedfordatarecording.ThefirsttaskofthebatterymanagementsoftwareistoinitializetheMSP430MCUperipherals.ThenitbuildsthebatterystackbydetectingandconfiguringtheexistingBQ76PL536.Thenexttasksaretoidentifythestatusofthecellsandthebatterypackbyreadingthevoltages,temperatures,fault,andalertconditions.Thebatterymanagementsoftwareiscontinuouslycheckingforafailconditionsonthebatterypack,itsamplesthecellvoltagesandtheintegrityofthebatterypackeverysecond.Thesystemgoestolow-powermodeiftherearenotanycorrectiveactionsorpendingtasks.AbriefdescriptionofthisprocessisshowninFigure5.3.CONCLUSIONSInthispaper,anbatterymanagementsystemisdesignedbasedonBQ76PL536AandMSP430.Thesystemcanprovidesover-voltage,under-voltage,over-temperature,shortcurrent,over-currentprotection,withtheusingdataloggingintheSDcardfortrace.ItcanalsocommunicationwithcontrollerandcomputerusingCANbusandUSB.Thesystemsfunctions,theaccuracyofSOCandSOHestimationareverifiedinthesimulatedoperatingconditions.Theresultsshowthattheprotectionfunctionalmoduleofthesystemisstableandreliable,theSOCandSOHestimationaccuracymeetthestandardofdesignation.REFERENCES1L.Lu,XuebingHan,JianqiuLi,JianfengHua,MinggaoOuyang,“Areviewonthekeyissuesforlithium-ionbatterymanagementinelectricvehicles,”JournalofPowerSources,Vol.226,pp.272-288,November2012.23to6SeriesCellLithium-IonBatteryMonitorandSecondaryProtectionICforApplications.TexasInstruments,2012.3WeiHe,N.Williard,ChaochaoChen,M.Pecht,“Stateofchargeestimationforelectricvehiclebatteriesusingunscentedkalmanfiltering,”MicroelectronicsReliability,Vol.53,pp.840-847,January2013.4WangZhenpo,SunFengchun“studyonthecharacteristicsofli-Ionbatteries,”MicroelectronicsReliability,Vol.24,pp.1053-1057,December,2004.0中文译文一个可追溯基于MSP430和bq76pl536a的电池管理系统设计摘要一个电池管理系统基于MSP430和bq76pl536a本文开发了。在这个设计有几个重要的功能,它利用安时积分法与温度和电流校正作为一种简单有效的算法的SoC,采用全充放电和SOH的圆圈,用SD卡使用信息记录跟踪。它采用CAN总线MSP430与控制器之间的通信,采用MSP430单片机和计算机之间的USB通信。具有电压、温度监测、电池均衡、充电和放电保护等功能。一、引言随着科技的发展和环境保护的迫切需要,新能源已成为一项明确的国家战略。锂电池是一种新型的可充电电池,其能量密度高,寿命长,非常适合实际应用:电动汽车、备用电源和光伏逆变器,为这些工业应用和功率要求提供了方便,在参考1这些都是。随着电动汽车的迅速发展,电池已成为电动汽车发展的瓶颈。锂电池是电动汽车的希望,但电池的寿命和安全性有更脆弱的disadvatange比其他类型的电池。对充放电电路提出了更高的要求。电池管理系统是一个关于电动汽车实用化的关键技术,电池管理系统的一个重要功能,电池剩余容量和健康估计车辆的商业化中发挥了重要的作用。在充电状态(SOC)估计和健康状态(SOH)一直是重要的组成部分在电池管理研究。高性能的电池管理系统(BMS)是能够使电池工作在最佳状态,可以提高电池的可靠性和工作寿命的准确程度通过电池的SOC和SOH估计。同时,对电池的电压、电流和温度必须进行测量,以保证包装的安全运行,提高包装性能。因此,电池管理技术的研究具有重要意义。本文提出了一种新的电池管理系统,这是基于MSP430和bq76pl536a。该系统可应用于数据采集、SOC和SOH估计,电池均衡控制,数据记录,数据通信,故障诊断的包。它可以将信息上传到控制器、计算机等系统中。计算机可以利用信息来提高电池性能和包装技术。该控制器可以使用信息给用户使用的建议,以提高电池的使用寿命,并给予用户良好的使用感觉。二、内容A.基于MSP430和bq76pl536aBMS系统的硬件设计在参考文献2,这是一bq76pl536a堆叠三至六单元串联锂电池组保护器和模拟前端,采用了精密的模数转换器,独立的电池电压和温度测量和保护;电池平衡,和一个稳压电源的用户电路。它可以测量电池电压的高精度和速度。1如果超过6个电池串联需要muti-bq76pl536a管理电池组。芯片与级联连接。根据bq76pl536a数据表,文中以两芯片为例,其结构如图1所示。该系统是由几个bq76pl536a,一micocontrollerMSP430F4152,电子元件。系统中的一个bq76pl536a可以监控6系列电池,它可以连接的级联,系统可以监控多达192个串联电池组。bq76pl536a可以通过SPI总线和IO与micocontroller沟通。采用电流模式bq76536a之间的通信,这样可以减少寄生电容的通信速度的不利影响。在系统bq76pl536a提供电压测量、电池保护(过压、欠压、过热保护)和电池均衡控制。MSP430可以获得测量信息和带来的故障诊断。它可以提供电池均衡控制,SOC和SOH估计,与控制器、计算机和其他方面提供电池的当前状态,记录使用信息和故障。在电池管理系统,根据文献2bq76pl536a数据表,电压和温度测量电路如图2所示。在电路中由电容和电阻组成的滤波电路。电阻值为1K欧姆,电容的值是0.1uF。参考文献2,给用户的使用方法。在该系统中,未使用的输入应连接到下一个输入到输入连接到一个细胞达到。如果堆栈有四个细胞,VC6连接VC5,连接到VC4。在该系统中,有2种方法可启动电池电压,温度测量。的conv_h引脚可设置或固件可以设置convert_ctrl-转换点。ADC的转换时间是固定在大约6美元每转换通道,同时,在转换开始另一个6us开销是必要的。所以可以计算一个转换的时间。如果硬件开始使用,一个接口引脚(conv_h)用于主机变频启动控制。一个转换周期是由一个硬件信号开始时conv_h转换低到高,由主机。主机应该保持这个状态,直到转换周期完成,以避免错误的边缘,导致转换开始时,目前的转换是不完整的。2信号同时送到更高的设备堆栈中的conv_n信号断言。的bq76pl536a自动序列通过一系列的测量可以通过adc_control登记后转换启动信号从任一登记点或硬件引脚接收。如果固件启动发行系统的convert_ctrl转换位也被用来写一位1位启动转换。它是在一个转换周期结束时自动重置。位只能写1位,IC都重置为0。分组广播的形式推荐给所有设备同时启动转换图2中的温度可以使用TS1+测量,TS1与ADC的差分输入引脚。输入由外部热敏电阻和电阻分压器网络驱动。TS和TS输入驱动的reg50内部ADC转换期间的连接参考。这将产生一个比例结果消除了广告的reg50电压漂移补偿或校正时需要用来潜水的温度传感器。有两个控制位的ADC启动温度转换要求。导致ADC转换通道的下一个请求的转换,TSNadc_control-TSN必须设置。io_control天津使FET开关连接TSN输入到VSS关闭,完成电压的分压器电路。的io_control位应设置为需要节省电力,因为热敏电阻,励磁电流可relativelt高。C.电池均衡电路设计电池均衡方法、被动方法和主动方法有2种。在被动的方法中,一个固定的分流电阻被用于在包中的每个单独的细胞,和电流是部分或完全绕过从细胞中,以限制或减少细胞电压。这种方法是不断地绕过电流和浪费能源。然而,这种方法是可靠的,所以在本文中使用的被动方法。在系统中,bq76pl536a有六个专门的输出,可用于控制外部n-FET作为一个电池平衡系统的一部分。适当的算法实现MSP430控制。的cb_ctrl-cbal1-6位控制状态的每个输出。输出是从登记的cb_ctrl位状态复制,例如1位在此登记激活外部平衡FET放置一个高相关的销。间近似的正电压和负电压的电池在其外部F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论