文献翻译-碳酸钙在AISI316管内污垢热阻模型的预测_第1页
文献翻译-碳酸钙在AISI316管内污垢热阻模型的预测_第2页
文献翻译-碳酸钙在AISI316管内污垢热阻模型的预测_第3页
文献翻译-碳酸钙在AISI316管内污垢热阻模型的预测_第4页
文献翻译-碳酸钙在AISI316管内污垢热阻模型的预测_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

英语翻译FoulingresistancemodelforpredictionofCaCO3scalinginAISI316tubesM.SultanKhan,S.M.Zubair,M.O.Budair,A.K.Sheikh,A.QuddusAbstract:Thetermfoulingisgenerallyusedtodescribethedepositionofunwanted(initiallyfluid)particles,whichincreasesbothresistancetoheattransferandpressuredropthroughtheheatexchanger.CaCO3whichispredominantlypresentinthecoolingwater,hasinversesolubilitycharacteristicsi.e.,itislesssolubleinwarmwater,resultingindepositionofscalesinheattransferequipment.Anexperimentalprogramisdescribedinthispapertostudythegrowthoffoulingasafunctionoftubesurfacetemperature,Reynoldsnumber,tubediameterandthetimeforwhichthetubehasbeensubjectedtothescaleformingsolution.Thedatacollectedfromtheexperimentsareusedtodevelopafoulingresistancemodel.Inaddition,theresultsobtainedfromthepresentstudyarealsocomparedwiththosediscussedearlierbyseveralinvestigatorswithregardtoCaCO3fouling.Keywords:scaling,theheatexchanger,CaCO31.IntroductionThedepositionofunwantedparticlesonthesurfacesofheatexchangersisdefinedasfouling.Thepresenceofthesedepositsrepresentsanadditionalthermalresistancetoheattransferwhichreducesthethermal-hydraulicperformanceoftheheattransferequipment.Thedepositionmaybecrystalline,biologicalmaterial,theproductsofchemicalreactionsincludingcorrosion,orparticulatematter1.Thegrowthofdepositsdependsuponanumberofparameterssuchasfluidcomposition(pHvalue,concentration,etc.),temperature,geometricdimensions,andReynoldsnumber(Re)oftheflowingfluid.DifferentaspectsofthedepositionprocessanditscharacterizationarediscussedinthepioneeringpaperofTaboreketal.2.Itshouldbenotedthatanunderstandingoftheeconomicpenaltiesassociatedwithfoulingisoneoftheprimaryreasonsforgreaterinterestinthefouling-relatedresearch.Pritchard3presentedcostestimatesassociatedwithfoulinginBritain.Thackery4estimatedtheoverallannualcostoffoulinginU.K.toabout0.3ofGNPfortheyear1978(approximately$1billion).TheorderofmagnitudesoftheseestimatesisconfirmedbyVanNostrandetal.5whileinvestigatingthefoulingrelatedcostsfortheU.S.specificrefineryunits.Steinhagenetal.6estimatedthefoulingrelatedcostsforNewZealandatabout$30to$46millionwhichisabout0.1-0.17%oftheannualGNPfortheyear1988.AprojecthasbeeninitiatedattheKingFahdUniversityofPetroleumandMinerals,Dhahrantostudytheimpactoffoulinginheatexchangers.Theobjectiveofthispaper,whichispartiallybasedontheabovementionedproject,istopresentafoulingresistancemodelofCaCO3scalinginAISI316stainlesssteeltubes.Inthisregard,aliteraturesurveyonprecipitationfoulingwithemphasisonCaCO3foulingisdiscussedinthenextsectionwhichisfollowedbydetailsoftestequipmentdesignandproceduretoobtainparametricexperimentalfoulingdata.Thedatathusobtainedfromthetestequipmentispresentedintheformofadimensionlessregressionmodel.2BackgroundofCaCO3foulingTheproblemoffoulingisencounteredinindustrialoperationsandprocesseswithnaturalwateroraqueoussolutionscontainingdissolvedinorganicsalts.Someofthesesaltsortheircombinationshaveinversesolubilitycharacteristics,sothattheyarelesssolubleinthehotfluidadjacenttotheheattransfersurface.ExamplesofsuchsaltsareCaCO3andCaSO4.Figure1showsthebehaviorofnormalandinversesolubilitysaltsolutions1.Fornormalsolubilitysaltsolution,atpointA,solutionisundersaturatedbutoncoolingtopointBitisjustsaturated.Onfurthercooling,thesolutionbecomessupersaturatedandcrystalnucleationoccursatpointC.AscrystallizationandcoolingproceedssolutionconcentrationfallsandmovesinthedirectionofD.NowforaninversesolubilitysaltsolutionitisundersaturatedatpointA,asitisheateditreachesthesolubilitylimitatpointBattemperature1andthenundercontinuedheatingthesolutionbecomessupersaturatedreachingpointCattemperature2whereprecipitationstarts.Theformationofscaleonheattransfersurfacesisacommonphenomenonwhereaqueoussolutionsareinvolved,e.g.theuseofnaturalwatersforcoolingpurposesorevaporativedesalination.Unlesssuitablemeasuresaretaken,theproblemofscaleformationcangiverisetoseriousconsequences.Insteamboilers,forinstance,thepresenceofscaleonwatersidecangiverisetohighmetaltemperaturesthatmayresultinmechanicalfailureofheat-transferequipment.Hanlon,asmentionedinreference1,commentedonthepotentialofscaleformationinindustrialequipmentisveryhigh.Asanexample,heobservedthatfora1milliongallon/daydesalinationplantundernormalconcentrationconditions,amaximumofabout1400kgofCaCO3couldbeprecipitatedeachday.Intermsofscalethickness,itwouldrepresentabuildupof0.1mmperdayonthetotalheatexchangersurfaceswithinatypicalplant.Althoughthismayberegardedasanextremeexampleitdoesillustratethemagnitudeofscalingorcrystallizationfoulingproblemsinindustrialplants.AsystematicstudyofscalingcharacteristicsofcoolingtowerwasconductedbyMorseandKnudsen7.EffectofsurfacetemperatureonthescalingbehaviorwasdiscussedbyStoryandKnudsen8.LeeandKnudsen9designedanexperimentalapparatustosimulatetheoperatingconditionsofacoolingtower.Thisisasomewhatextensiveinvestigationtodeterminetheeffectofflowvelocity,surfacetemperatureandwaterqualityonscalingofexchangertubes.CoatesandKnudsen10havediscussedresultsoftheirexperimentsconductedforobtainingdataregardingCaCO3scaling.WatkinsonandMartinez11studiedscalingduetoCaCO3incoppertubesunderconditionsthatpromoterapidandseverescaling.Inthisregard,artificiallyhardenedwaterofhighdissolvedandsuspendedsolidswascirculatedthroughaheatedtestsection.Effectsofflowvelocity,tubediameterandbulktemperatureonasymptoticfoulingresistancehavebeendetermined.Manzoor12conductedfoulingrelatedexperimentsandstatisticallyanalysedCaCO3foulingdata.TheobjectiveofManzoorsstudywastodemonstratethatfoulingresistancevariesfrompointtopointalongahorizontaltubeandalsoforthesamepointitvariesfromreplicatetoreplicate.Theoperatingparametersweretemperature,pressure,solutionconcentrationandvelocitywhichwerekeptconstantduringtheexperiments.Konings13onthebasisofexperimentalworkwithcoolingwater,treatedbydifferentmethodstoeliminatescaling,presentedatableofguidevaluesforthefoulingresistance.Anexperimentalstudyoftube-sidefoulingresistanceinwaterchilledevaporatorwascarriedoutbyHaideretal.14inwhich12.6ftlongevaporatortubeswereusedandfoulingdataweretakenforfourtubegeometries.Nodataweretakenatdifferentsectionsofthetube.ThefoulingcharacteristicsofcoolingwaterforprecipitationandparticulatefoulingarealsodiscussedbyKnudsen15whereheemphasizedseriousproblemswhenheatexchangersareoverdesignedduetotheuseofincorrectdesignfoulingallowance.Practicalandfundamentalaspectsofprecipitationfouling(CaCO3scaling)werereviewedbyHasson16.Heconsideredtheproblemofdefiningprecipitationfoulingtendencybyreviewingprinciplesofsolutionequilibriaandprecipitationkineticsforsaltsystemsfrequentlyencounteredinheatexchangerapplications.BranchandMuller-Steinhagen17developedamodelforfoulinginshellandtubeheatexchangersbyconsideringHassonsionicdiffusionmodelforCaCO3scaling.Hesselgreaves18discussedtheeffectofsystemparametersonthefoulingperformanceofheatexchangers.AmodelforCaCO3scaleformation,whichgivesreliablepredictionofthefoulingratewithalterationoffeedwaterchemistry,wasdevelopedbyTretyakovetal.19.Itshouldbenotedfromtheabovestudiesthatsofarnofoulingresistance(f)modelhasbeendevelopedthatmaypredictfasafunctionof,tubesurfacetemperatureandtubediameter.3TestequipmentdesignThetestapparatuswasadouble-pipecounter-flowheatexchangerasshowninFig.2.Theworkingfluidwaspassedthroughtheinnertubecomprisedofsixtestsections,each0.1524mlong.Toheatupthesurfaceoftheinnertube,hotwaterwascirculatedintheoutertubeusingaConstant-TemperatureWater-CircultorBath(CTWCB),whichhadaprovisionofvariabletemperaturesettings.Threeheatexchangerswerefabricatedwithinnertubesizesof1/4in(0.00635m),3/8in(0.00952m)and1/2in(0.0127m).Theoutertoinnerradiiratiooftubeswassetatfourforallthreeheatexchangers.AllfittingsweremadeofAISI316.Tosimulatetheconditionsencounteredincoolingwatersystems,Na2CO3andCaCl2solutions,preparedinde-mineralized(distilled)waterwereusedtoproduceCaCO3asaproductofchemicalreaction.Theproductsolution,whenpassedthroughtheinnertuberesultedinthedepositionofCaCO3scaleontheinnersideofthetube.ThechemicalreactiontoproduceCaCO3scaleisgivenby20OxHNaClCONaxHCal23322Thechemicalsolutionswerepre-heated,separately,usingpre-heatersandheatingtapestoachieveatemperatureof50Cbeforethesolutionenteredtheheatexchanger.ThesystemisaoncethroughtypeandaBackPressureRegulator(BPR)wasusedtomaintainapressureof689kPaattheendoftheheatexchanger.Figure3showsthescalingapparatuswhichconsistsoftwohighpressurevariablestrokepumps,storagetanksforthechemicalsolutions,pre-heaters,heatingtapes,CTWCB,thermocouples,temperaturecontrollersandaBPR.Additionaldetailsanddescriptionofthetestapparatusarepresentedinreference21.4ExperimentalprocedureTheconcentrationoftheproductsolutionwaskeptconstantat0.0006mol/l.Thisrequired2.543and3.528gofNa2CO3andCaCl2,respectively,tobemixedin40lofdistilledwater.TheparametersthatwerevariedduringtheexperimentsareReynoldsnumber,surfacetemperatureanddiameteroftheinnertube.ItshouldbenotedthatexperimentswereconductedforallpossiblecombinationsoftheparametervaluesasshowninTable1,inwhichReynoldsnumberisbasedontheinnerdiameterofthetestsections.Asalreadymentionedthreeheatexchangersweredesignedandfabricatedforthethreetubesizes.Foraparticularsize,ReynoldsnumberwasfixedandvariousexperimentswereconductedbyvaryingthesurfacetemperaturesoftheinnertubebythehelpoftheCTWCB.Twohourscontinuousoperationofthetestisreferredtoasatestrun.Oneexperimentconsistedoffive2hrunsforaparticularsetofparameters.Attheendofeachrun,theheatexchangerwasdismantledandthetestsectionsweredriedintheoven.Massgainofthetestpiecesduetoscalingwasthenmeasuredusingananalyticalweighingscalewhichhadanaccuracyof1mg.Theheatexchangerwasthenre-assembledforthenextexperimentalrun.Itwasobservedthat0.25in(0.0127m)tubeblockedduetoscalingafter10hofoperationthusrestrictingthedurationoftheexperimentstoamaximumof10hours.PeriodicmeasurementsoftheflowrateswerecarriedouttomaintainaconstantReynoldsnumberduringtheentireexperiments.Forthenextsetofexperiment,newsetoftubeswereused.Usingthemassgainmethod,foulingresistance(f)wasdeterminedasfollows:where2istheinsideradiusofthetube,1istheaveragevalueofradiuskrRf12duetothedepositforaparticulartestsectionwhichcanbecalculatedbyusingtherelationlmasginr215ConcludingremarksThefoulingresistancedataofCaCO3scalingwerepresentedtostudytheinfluenceoftubesurfacetemperature,Reynoldsnumberandtubediameter.ItwasobservedthattheinfluenceofReynoldsnumberintherangeinvestigated(9001700)wasalmostnegligible,whichwasalsonoticedbyLeeandKnudsen9whohavepresentedthesameconclusionfortheirexperimentaldataonasymptoticfoulingresistance.Theyhadobservedthatbyvaryingthefluidvelocitiesfrom3to10ft/s(0.91to3.05m/s)therewasnoprofoundeffectontheamountofCaCO3foulingresistance.However,theinfluenceoftubesurfacetemperatureandtubediameteronthefoulinggrowthwasfoundtobeappreciablefortherangeinvestigated.ThereasonsfortheincreasedfoulingresistanceasafunctionofsurfacetemperatureanddiameterwereexplainedbyconsideringtheinversesolubilitycharacteristicsofCaCO3andtubesurfaceeffects.Thedataobtainedfromexperimentsarepresentedintheformofadimensionlessfoulingresistancemodelforestimationandpredictionpurpose.Inthisregard,allthevariablesinthemodelarenon-dimensionalizedwithrespecttotherespectivemaximumvaluesconsideredinthisstudy.Themodelthusdevelopedhasbeeninvestigatedinsomewhatmoredetailbyobservingthenormalprobabilityplotofresiduals.Inaddition,severalotherstatisticalchecksarealsomadetoassessthesuitabilityofthemodel.Noapparentmodeldefectsarenoticed.Itisthusconcludedthatthefoulingresistancemodelmaybeconsideredasareliablemodelwithintherangeofexperimentalparametersinvestigatedinthepresentstudy.References1.Bott,T.R.:FoulingofHeatExchangers.Elsevier,Netherlands(1995)2.Taborek,J.;Aoki,T.;Knudsen,J.G.:Fouling,themajorunresolvedprobleminheattransfer.Chem.Eng.Progress68-2(1972)59673.Pritchard,A.M.:Fouling-Scienceorart.In:E.F.C.SomerscalesandJ.G.Knudsen(Eds.).HeatTransferEquipment.Hemisphere,Washington,D.C.(1981)4.Thackery,P.A.:Thecostoffoulinginheatexchangerplant.In:A.M.Pritcard(Ed.),Fouling-ScienceorArt.Guildford,UnitedKingdom(1979)5.VanNostrand,W.L.;Leach,S.H.;Haluska,J.L.:Economicpenaltiesassociatedwiththefoulingofrefineryheattransferequipment.In:E.F.C.SomerscalesandJ.G.Knudsen,(Eds.),FoulingofHeatTransferEquipment,Hemisphere,Washington,DC(1981)6.Steinhagen,R.;Steinhagen,H.M.;Maagni,K.:ProblemsandcostsduetoheatexchangerfoulinginNewZealandIndustries.HeatTransferEng.11-7(1993)19307.Morse,R.W.;Knudsen,J.G.:Effectofalkalanityonthescalingofsimulatedcoolingtowerwater.CanadJ.Chem.Eng.55(1977)2722788.Story,M.;Knudsen,J.G.:Theeffectofheattransfersurfacetemperatureonthescalingbehaviourofsimulatedcoolingtowerwater.AIChESymp.Ser.74-1124(1978)25309.Lee,S.H.;Knudsen,J.G.:Scalingcharacteristicsofcoolingtowerwater.ASHRAETrans.85-1(1979)28130210.Coates,K.E.;Knudsen,J.G.:Calciumcarbonatescalingcharacteristicsofcoolingtowerwater.ASHRAETrans.86-2(1980)689111.Watkinson,A.P.;Martinez,O.:Scalingofheatexchangertubesbycalciumcarbonate.JHeatTransfer97(1975)50450812.Haq,M.U.:Reliability-basedmaintenancestratigiesforheatexchangerssubjecttofouling.MastersThesis,KingFahdUniversityofPetroleumandMinerals,SaudiArabia(1995)13.Konings,A.M.:GuideValuesforthefoulingresistancesofcoolingwaterwithdifferenttypesoftreatmentfordesignofshell-andtubeheatexchangers.HeatTransferEng.10-4(1989)546114.Haider,S.I.;Meitz,A.K.;Webb,R.L.:Anexperimentalstudyoftube-sidefoulingresistanceinwater-chiller-floodedevaporators.ASHRAETrans.98-2(1992)86103.15.Knudsen,J.G.:Copingwithcoolingwaterfoulingintubularheatexchangers.AIChESymp.Ser.85-267(1989)11216.Hasson,D.:Precipitationfouling.In:E.F.C.SomerscalesadJ.G.Knudsen,(Eds),FoulingofHeatTransferEquipment.Hemisphere,Washington,DC(1981)17.Branch,C.A.;Steinhagen,H.M.M.:Influenceofscalingontheperformanceofshell-and-tubeheatexchangers.HeatTransferEng.12-2(1991)378518.Hesselgreaves,J.E.:Theeffectofsystemparametersonthefoulingperformanceofheatexchangers.ICHEMESymp.Ser.129(1992)995100619.Tretyakov,O.V.;Kristskiy,V.G.;Styazhkin,P.S.:Improvedpredictionoftheformationofcalciumcarbonatescaleinheatexchangersofsecondaryloopsofconventionalthermalandnuclearpowerplants.HeatTransfer-Sov.Res.23(1991)53253820.Masterten,W.L.;Hurley,C.N.:Chemistry,PrinciplesandReactions.Saunders,Philadelphia(1989)21.Khan,M.S.:Effectofthermal-hydraulicparametersonCaCOscalinginheatexchangers.MastersThesis,KingFahdUniver3sityofPetroleumandMinerals,SaudiArabia(1996)22.Parry,D.J.;Hawthorn,D.;Rantell,A.:FoulingofPowerStationCondenserswithintheMidlandsRegionoftheC.E.G.B.,In:Somerscales,E.F.C.andKnudsen,J.G.(Eds.)FoulingofHeat.TransferEquipment.Hemisphere,Washington,DC(1979)23.Montgomery,D.C.;Peck,E.A.:IntroductiontoLinearRegressionAnalysis.Wiley,NewYork(1985).碳酸钙在AISI316管内污垢热阻模型的预测摘要:结垢此术语常常用来描述不期望的会加大热交换器的压力降和热阻的颗粒(最早在液体中)的沉降。可知,碳酸钙主要存于冷却水当中,有难溶的特点,因为其难溶于热水,导致它在热交换设备中的结垢沉降。此篇论文目的在于研究有关管子表面的溶液,雷诺数,温度和在管子中结垢时间和污垢增长关系,将描述一个的实验项目。从当今研究中得到的结果也被用来与早些时候部分调研人员关于碳酸钙结垢的讨论进行比较。另外,来自实验中的数据被用来建立一个污垢热阻模型关键词:结垢,热交换设备,碳酸钙1.绪论这些沉积的存在会表现出附加的热阻,将会降低热交换设备的水传热性能。沉积的增加取决与包括液体成分(pH值,浓度等),温度,几何尺寸和流体雷诺数在内的一系列参数。结垢是指非期望颗粒在热交换器表面的沉积这些沉降物可能是包括腐蚀、颗粒物质在内的化学反应产物或者结晶生物物质。在Taborek等人早期的论文中对沉积过程的不同方面及其特性进行了讨论。应该注意到结垢所造成的经济损失是结垢相关研究的一个主要原因。Pritchard提出了英国在结垢方面的大概成本。VanNostrand等人在调查了美国精炼厂之后确认了这些估计。Steinhagen在1985年在新西兰,污垢造成的损失约占当年国民生产总值的0.1-0.17%,约为3000-4600万美元。Thackery在1973年英国污垢所造成的全部损失大约是当年国民生产总值的0.3(大约为10亿美元)。在这方面,一篇有关碳酸钙结垢的调查将在下一个有相关实验设计细节和获得实验性的结垢数据的程序的部分被讨论。本篇论文部分是根据此项目,其目的是提出碳酸钙在AISI316不锈钢管子内沉积的污垢热阻模型。因此,这些数据将以一个无量纲衰退模型的形式来提出。为了研究结垢对热交换器的影响,Dhahran的KingFahdUniversityofPetroleumandMinerals发起了一个项目。温度温度2.碳酸钙结垢的背景在有无机盐水溶液或天然水的工业过程和操作中,常常会遇到结垢的问题。一些盐或它们的组成具有溶解度低的特点,所以较难溶解在与热交换器表面相邻的热流体内,例如硫酸钙和碳酸钙。图1表示不溶性盐和普通的盐的表现。对于一般的可溶性盐的解决方法:观点一,在较进一步的冷却上,解决变成使过度饱和而且水晶成核。观点三,集中解决结晶和冷却的问题。观点二,解决不溶解但是在冷却上指出它是饱和的。观点四,现在对于相反的方向移动的可溶性盐解决,如同它是一样加热温度到点B到达可溶性界限,随后在继续的加热解决之下变成过度饱和,到达温度点C,开始坠落。换热器表面水垢的形成是十分常见的现象(包括水溶液),例如,使用天然水来冷却或者蒸发脱盐。除非采用适当的措施,不然水垢将会引起严重的后果。例如,蒸发器里水垢引起的高金属温度可能导致换热设备机械失灵。上文提到的Hanlon认为工业设备中水垢的位势事非常高的。转化成水垢厚度相当于换热器表面全面积的0.1毫米。虽然这可能事一个极端的例子,但是它确实说明了工业设备水垢的大小或者析晶结垢的问题。Story和Knudsen讨论了水垢表面温度的影响。Lee和Knudsen设计了一个冷却塔试验装置模拟操作情况。这项调查略带广泛性,目的是研究热交换器管道上流速,表面温度个水质对结垢的影响。Coates和Knudsen已经讨论他们为了获得与碳酸钙结垢有关的的数据而进行的的试验。Watkinson和Martinez研究了碳酸钙在铜管内快速又剧烈的结垢作用。在这方面,高度溶解的人工硬水和悬浮固体在一段热测试部分循环,然后测定出流速,管直径和温度对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论