




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
- 1 -1 前言1.1 课题背景1.1.1 镁合金材料发展概况金属镁作为质轻、节能、环保的优秀金属元素,在全球金属矿产资源日益枯竭、价格大幅攀升的情况下,镁以其资源优势、价格优势、产品性能优势在工业生产中的地位进一步凸显,在未来发展中镁将成为最重要的金属材料。目前镁合金主要应用于以铸造为主生产的一些机械零件,但受到铸造工艺专业特点的局限,使镁合金应用的空间相当狭小。据有关统计,对于每种金属材料的消耗,板材要占到 7 0以上。在生产中对板材进行各种形状的成形加工,可以生产出很多优质的机械结构零件。板材加工能极大简化金属加工流程,降低成本,扩大实用范围。然而板材成形加工又对板材的加工性能提出了更高的要求:希望通过成型加工得到的组织结构均匀、晶粒细小,容易取得满意的效果。随着汽车、 、航空航天、计算机、通讯和消费电子产品等领域节能、环保及舒适的要求,迫切需要优质宽幅的镁合金薄板等金属材料。然而传统的镁合金薄板生产工艺主要是采用热轧和挤压方法,由于热轧工艺和挤压工艺流程长、成材率低、成本高导致价格昂贵,而挤压薄板又受幅面的限制,生产效率低下,因此传统工艺生产的薄板应用领域十分有限。因此,积极探究镁合金液态连铸连轧技术,生产工艺流程、性能高、成本低的连铸连轧板材,对于镁及镁合金的应用推广,推动产业发展,具有十分重要的意义。1.1.2 板带连铸连轧技术发展概况板带铸轧技术的发展至今已有 150 余年的历史。1846 年,英国人贝塞麦(Bessemer)就提出,从两个旋转辊轮上方浇注金属液,通过内部具有循环冷却作用的铸轧辊辊缝下边引出铸轧带坯,但是由于当时技术水平和生产工艺条件的限制未能获得成功。在随后的 100 多年里这项技术始终不为人们重视,到 1930 年德国人容汉斯(Junghans)报道了立式连续铸轧成功的信息。在以后的发展中,又依次出现了法国斯卡尔(Scal)公司研制的 3C(Continuous Caster Between Cylinder)双辊水平式铸轧机,美国的黑兹利特(Hazelett)公司提出的双带式连铸机,但是由于带坯上表面皮下夹杂物影响生产质量而停止。20 世纪 80年代以来,随着科学技术的不断发展,对于双带式产生的问题得到解决。其中,德国和日本相继有企业建立试验机组,对该项技术的发展起到了推动作用。从 1964 年我国开始研制双辊式铸轧机。在 1965 年研制出辊径 400mm 的下注式板带铸轧机,并成功生产出宽 700mm 的带坯。但因故中间试验停止,直到 1975- 2 -年此项技术得到国家相关部委的验收。此后板带铸轧技术在我国快速发展。截至目前,根据不完全的统计,我国实际生产中投入的双辊式板带铸轧机在100 套之上。不论是有色金属铸轧板带铸轧技术装备还是生产工艺,我国已完全掌握了这项技术,生产设备和产品均能达到国际先进水平。1.2 镁合金板带连铸连轧生产的特点在板带连续铸轧技术应用以前,世界上板带生产长期沿用模铸热轧的传统方式组织生产。该方法依次经过铸锭、切割、铣面、加热、开坯、热轧等一系列工序,且存在投资多、占地面积大、生产周期长、参与人员多、能耗大、生产成本高等一系列显著的缺点。与传统模铸法相比,镁合金的连铸连轧技术具有以下的特点:(1)合金板带的铸造与轧制集中于一台设备,且近乎同时完成。比之于传统的方式省去了铸锭加热、开坯、热轧等多道工序,减少了废料的再次熔炼,极大节约了能源消耗;(2)省略铸锭铣面和热轧后切头去尾的工序,成材率提高;(3)设备简单集中、投资少、占地面积小、建造速度快、生产成本低;(4)生产连续稳定,生产工艺简化、生产周期缩短、人员配备少、生产率提高、易实现自动化。- 3 -2 工艺与设备设计方案2.1 设计任务 设计任务包括以下两个方面:(1) 镁合金连铸连轧工艺参数:轧制镁合金板带的牌号:AZ31(Al 3%,Zn0.1% ) ,性能参数见表 2.1:表 2.1 轧制镁合金性能参数抗拉强度/MPa屈服强度/MPa剪切强度/MPa弹性模量/MPa硬度/HR拉伸/MPa压缩/MPa承载/MPa290220 180 325160 45 73生产的镁合金板带参数:宽 300600mm,厚 0.59mm;铸轧机轧辊速度:0.51m/s.(2) 镁合金连铸连轧设备的设计:此部分的主要设计内容在铸轧机的设计,其余部分只作简要设计说明。2.2 方案设计2.2.1 镁合金连铸连轧生产工艺确定镁合金的连铸连轧工艺与设备用来制作镁合金的条带或板材,其特点是将熔融的镁合金溶液通过铸嘴倒入一对转向相反、内部通冷却水的铸轧辊之间,在这对辊缝中完成浇铸、冷却、结晶、凝固、轧制和出坯等一系列的工艺过程,其间同时进行着复杂的流变和物理化学过程。其组织生产基本原理如图 2.1 所示。- 4 -图 2.1 镁合金连铸连轧工艺与设备基本原理示意简图1.熔炼中间包 2.溶液输送装置 3.轧辊 4.牵引机 5.剪切机 6.卷取机从前图所示可以看出,整个生产线可以概括为熔炼系统、浇铸系统、铸轧系统和牵引卷曲系统四大部分。这种工艺巧妙地把铸造和轧制两种工艺结合起来,相比于传统的方式先铸造出镁合金铸锭后经加热炉加热,再进行轧制的生产流程,具有简化工艺、改善劳动条件、增加金属收得率、节约能源、提高连铸坯质量、便于实现机械化和自动化的优点,能够满足用户的生产需求。结合生产厂家现阶段生产实际,对生产工艺流程作出如下的设计:镁合金锭熔化镁液输送镁液流嘴铸轧机连轧机剪切机矫直机精轧机后续处理产品。此生产工艺与传统的生产流程相比,具有工艺流程短、可控性强的显著特点。2.2.2 镁合金连铸连轧核心设备设计方案的确定鉴于生产线设备较多和本人学识有限,在此次设计中仅对铸轧中的核心部件即铸轧机进行相关设计。(1)铸轧机形式经过一个世纪的发展,板带铸轧设备的形式已有 10 余种之多,按结构可进行以下的分类: 双辊式板带铸轧设备:这种铸轧机是将液态金属注入两个相对旋转的铸轧辊的辊缝,通过轧辊内部冷却水将热量带走,同时通过双辊间形成的铸轧区连续轧制出薄的带板。双辊式铸轧机包括下注双辊式铸轧机、倾斜双辊式铸轧机、水平双辊式铸轧机等三种形式,其中倾斜式还分为低速和高速两种; 带轮式铸轧设备:由铸轮凹槽同旋转外包的钢带形成移动式铸模,将液态金属注入铸轮凹槽和旋转带钢之间,通过铸轮内冷却水带走热量,得到薄的板带,然后进一步轧制出较好的带材; 双带式铸轧设备:在两张紧的平行钢带之间注入液态金属,依靠由双带形成的移动结晶器铸成薄的带坯,再轧制出带材; 其他形式的铸轧设备:除以上三种设备以外还有单辊式、多辊式等形式的铸轧设备。结合厂家生产设备将铸轧机形式定为水平双辊式铸轧机,这种铸轧机与其他铸轧机相比具有安装调试方便、易于维护的特点(2)设备组成本次设计的镁合金板带铸轧机列的设备主要包括工作机座、万向接轴、联轴器、接轴平衡机构、分齿箱、减速器、电动机等部件。 工作机座:作为铸轧机的执行机构,它由轧辊及其轴承、轧辊调整装置、机架- 5 -等零部件和机构组成; 连接轴:铸轧机中电机运动产生的力矩是通过连接轴传递到轧辊的。铸轧机中常用的连接轴有万向接轴、梅花接轴、齿轮接轴以及联合接轴等,具体选择视情况而定; 分齿箱:通过分齿箱的传输力矩被分成两个相反方向的传动形式,这样就保证了轧辊的啮合旋转,且速度同步,方向相反; 减速器:将电动机传出的转速降低到所需要的程度; 电动机:在本次设计中选取电动机作为铸轧机的动力源,其型号的选取与铸轧机工作制度相关,具体型号选取见电动机选取部分。- 6 -3 铸轧机设计 3.1 铸轧机力能参数计算3.1.1 设计参数(1)铸轧机型号 9601600mm;(2)轧制镁合金板厚度 0.59mm;(3)铸轧速度:v =1.0-1.5m/min;3.1.2 力能参数计算(1)铸轧力和力矩由于镁合金的连铸法不同于传统的热轧,其毛料为液态镁金属或其溶液。因此,在铸轧过程中大约有 12mm 高的两相区,金属经过 12mm 的两相区之后,开始凝固的温度为 575,而出辊的温度由于冷却水的作用要降至 400360,故铸轧板的温度在整个铸轧过程中连续降低的,在轧制力计算中必须把上述因素考虑在内。铸轧过程的接触弧长 l,按近似公式计算:(3.1))(39.2750mhR式中:R铸轧辊半径,R=250mm h绝对压下量, )(39120h故 %5123001轧制温度:依据生产测知,前箱温度 650630,入辊温度大约在 630,铸轧板在出辊时的温度在 360左右。所以平均轧制温度为() 4952360出入平 T(3.2)从上面铸轧温度看出,铸轧辊冷却强度较大。单位变形抗力计算(按任式公式计算):)13.0(2)(53.0_ pphlhlKP- 7 -(3.3)式中 K=1.15 , ,2.0MPa180. )(5.102901mhp总压力: ,其中 F=lw=27.39600=0.016(m2)P故 P=7.8(MN)轧制力矩: )(72.13.504mKNMlaPzz(2)电机容量计算电机的容量计算通常依据铸轧时作用在电机轴上的扭矩来选取。初选主电机依据以下公式:(3.4)RVNz0式中:Mz 轧制力矩与两轧辊轴承处摩擦力矩之和,考虑到只是初选电机,并且摩擦力矩相对于轧制力矩要小得多,故在此处忽略不计,KNm ;V铸轧速度,m/min; 0传动系统总效率,初选时取 0.850.90,此处取 0.85;R铸轧辊半径,m.有前面的数据可得: )(14.2560.8507213KWN3.1.3 铸轧机工作制度与电动机选择(1)铸轧机工作制度在生产操作中铸轧机的工作制度可分为可逆和不可逆两种形式,依据铸轧状态又可分有张力的带式工作制和无张力块片式工作制度。 可逆与不可逆式:可逆式:在此工作制度中,轧辊即可逆转又可调速,能满足升速轧制、降速抛出轧件和低速咬入等要求;不可逆式:在应用中最广,采用此种工作制度,轧辊与铸轧件的运动方向不变。 张力式工作制度:此制度使用时,轧件既要承受轧辊的铸轧力又要承受后续机组的张力,使轧件- 8 -处于易塑形变形的状态,易于得到平直的薄带。在本次设计中采用有张力的带式且不可逆的工作制度。(3) 电动机的选择在此处电动机负载特性是:调速范围较大、负载平稳、连续工作、三班制。由于异步交流电机结构简单、维护方便、重量轻、成本低、工作效率高,结合生产,选择满足特性的交流电机作为动力源。又当功率一定时,电机的转速越低,则效率越低;但是高速电机将加大整个传动系统中减速机构的传动比,致使传动部分相比较而言比较复杂。如前计算知电机容量为:N=25.14kw,考虑安全系数和传动中的摩擦损耗等因素,选择电机型号为:Y280MS-8 ,即 Y 系列(IP23 )防护式笼式三相异步电动机。其参数如表 3.1 所示:表 3.1 电动机参数型号额定功率(KW)转速(r/min)定子电流( A)效率( %)功率因素cos最大转矩额定转矩堵转转矩额定转矩堵转电流额定电流重量(Kg)Y280MS-8 55 740 112.4 91 0.80 2.0 1.8 6.0 8203.2 铸轧辊及其轴承3.2.1 铸轧辊(1)铸轧辊结构、参数图 3.1 铸轧辊结构1.辊头 2.辊径 3.辊身铸轧辊通常由辊径、辊身和辊头三部分组成。另外,还有制造、安装所需的工艺表面,如中心孔。其工作与装配是将辊径安放在轴承中,通过轴承座和压下装置- 9 -将轧制力传递给机架,由与辊头相连接的接轴,传递所需扭矩。辊身是轧辊和轧件相接触使其产生变形的部分,为整个铸轧辊的重要部分;辊径与轴承配合支撑起轧辊;分布于两端的辊头,一端与传动轴相接,一端通入冷却水,辊头结构有多种形式,如梅花接头、平台接头和双键槽接头在此处考虑到安全性和加工可行性,选用平台接头。铸轧辊的基本参数包括以下几个方面:轧辊的公称直径 D、辊身长 L、辊径直径 d 及其长度 l、辊头尺寸。1. 轧辊公称直径 D:依据轧辊强度和允许咬入角 来确定其尺寸。为了保证能够顺利进行轧制,确定轧辊直径必须考虑咬入条件,轧辊最小的直径应满足如下所示的关系:(3.5)cos1minh式中 h压下量,mm;最大允许咬入角, ( ) 。由于轧辊在使用时磨损后可允许重车或重磨以便延长使用,直到轧辊削弱到最低值为止,在本次设计中轧辊直径 D=500mm。2. 辊身长度 L:它是表征板带铸轧机轧辊特性的重要参数,其长度的确定要考虑轧辊的弯曲挠度、足量的强度以及所轧制板带的最大宽度。在一般设计中只需辊身长度一定要大于其轧制板带长度即可,即L=Bmax+a (3.6)式中 L辊身长度;Bmax轧制板带的最大宽度,本次设计中宽度为 Bmax=600mm;a宽度余量,此处取 a=200mm.由以上可知 L=800mm,即设计的辊身长度为 800mm。3. 辊径: 辊径部分尺寸为辊径直径 d 和长度 l,其直径和长度与所需轴承型号及工作载荷有关。由于受轴承尺寸的限制,辊径直径要比辊身直径小的多,所以辊径与辊身过度出往往强度最差,在条件允许的情况下,此处的过渡圆角要适量的大一些。设计中在此处的轴承选用四列圆锥滚子轴承,由于轴承外径较大,故辊径尺寸不能过大,一半以下公式计算:d=(0.50.55)D (3.7)式中 d辊径直径;D辊身直径,D=500mm.则有 d=(0.5 0.55)500=250 275(mm),鉴于轴承内径为标准值,故选择- 10 -d=260mm。对应轴承的安装定位需要取辊径长度 l=345mm。辊径与辊身圆角过渡处以下式选择圆角半径:r=(0.050.12)D=(0.050.12) 500=(25 60)(mm)取 r=50mm.4.辊头尺寸:在铸轧辊结构部分已选择平台接头,故其尺寸选择依据如下:辊头直径 d1=0.85d=0.85260=221(mm),取 d1=200mm平台厚度 h=0.75d1=0.75200=150(mm).5.辊套厚度:铸轧辊由辊套和辊芯两部分组成,辊套厚度一般以 3040mm为宜,考虑到本设计中铸轧辊寿命和尺寸,取其厚度为 40mm。6.冷却循环系统:在设计中其冷却循环水沟槽采用横向和纵向结合的形式,沟槽径向宽度为 12mm,分布形式为 20(中心距)37(个) ,轴向槽宽 20mm 共计 8个,沿圆周均匀分布,通水方式为一进四出,在进水孔上开有 12 个沿轴线直达表面的孔,一周共计 48 个,出水孔上沿轴线开有 12 个与进水孔交错的通道,共计 48 个。(2)铸轧辊材料:铸轧辊由辊芯和辊套两部分组成,各个部分所选用的材料不相同,参考现阶段厂家选用材料作出如下的选择:辊芯材料:42CrMo,淬火后硬度为 HRC2022;辊套材料:32CrMoV,淬火后硬度为 HRC4042。3.2.2 铸轧辊强度校核在生产中,铸轧辊的主要破坏形式有断辊、辊面剥落、辊面磨损、辊面热裂等,造成这一系列平破坏的原因主要是受到各种应力的影响。为保证生产,就要求轧辊有足够的抗破坏能力。根据轧辊各部分的受力特点,对辊身计算弯曲应力;对辊头计算扭转应力;辊径部分需要进行扭转和弯曲应力计算,再合成;计算应力只要不大于许用应力就说明轧辊安全。轧辊受力分布如图 3.2 所示。图中轧件位于辊身中央,轧制力沿轧件度分布,轧辊支反力左右相等切着用于压下螺丝中心线位置。- 11 -图 3.2 铸轧辊受力图根据受力可列出各段弯矩方程:当 PxMbax21,0时 2)(2baq时 ,式中 P轧制力;a压下螺丝中心距;b轧件宽度;q单位长度轧制力。辊身中央截面弯曲力矩)84(baPMD(3.8)弯曲应力 (3.9)31.0D辊径危险截面处的弯矩: CPMd2(3.10)弯曲应力: 31.0d(3.11)- 12 -辊径处的扭转应力: (3.12)32.0dMnd式中 D铸轧辊直径;d辊径直径;Mn铸轧辊的扭矩。由前面公式(3.8) 、 (3.9) 、 (3.10) 、 (3.11) 、 (3.12)代入数据得)(93.26.08592.05. )(.1.07.7.1. 23.208. )(84.95.14.0 )(10248.60.7)(33 3633 6633 66MPadnpMPcmNCMPaDbaPndd 辊径处危险截面的弯曲应力和扭转应力合成按第四强度理论计算有: )(29547.15.152224 MPadd 满足强度要求。3.2.3 铸轧辊轴承选择(1)铸轧辊轴承工作特点轧辊轴承是铸轧机中的重要部件,同一般轴承相比较具有以下特点:1. 工作负荷大 受轴承外围尺寸限制和较短辊径内需承受很大的需用应力的制约导致工作时单位压力比一般的轴承高 2-4 倍,甚至更高。2. 转动速度低 在铸轧过程中轧辊的转速不会太高,以便于热量的传递3. 工作环境差 整个铸轧过程有大量的热交换,一部分热量会传递到轴承,使其在高温环境下工作,又由于轧辊内部的冷却系统通过轴承安放位置,使其温度有所减缓。(2)铸轧辊轴承选择轧辊用轴承一般为滑动轴承、滚动轴承和液体摩擦轴承。但是目前滑动轴承趋于淘汰,只有少量的老式轧机使用。结合轧辊受力,多采用多列滚子轴承,其具有径向尺寸小和较好的抗冲击能力的特点。此处选择四列圆锥滚子轴承,此轴承即可承受径向力又可承受轴向力。由辊径尺寸选择四列圆锥滚子轴承的型号为:382052 GB/T300 1995.- 13 -3.2.4 铸轧辊轴承寿命校核轴承寿命与当量动载荷关系式)(601PCnLh(3.13)式中 Lh轴承额定寿命, h;n轴承转速,r/min;C额定动载荷,N ;P当量动载荷,N;寿命指数,对于球轴承 =3;对于滚子轴承 = 。310当量动载荷计算公式:arYFXP(3.14)式中 X径向系数;Y轴向系数;Fr径向载荷,N;Fa轴向载荷,N。鉴于设计中采用的四列圆锥滚子轴承仅承受径向力,故有Fr= =3.9106(N)P21P=XFr=1.03.9106=3900(KN)轴承额定动载荷 C=2710KN,轴承最高转速 n=0.498r/min,则其寿命: )(97)3021(498.60)(16 hPnLh 满足轴承的使用寿命。3.3 铸轧机机架3.3.1 铸轧机机架结构及尺寸铸轧机架俗称牌坊,是铸轧机的重要组成部分,其承受来自轧辊、轴承座和压下螺丝的轧制力,在其上安装着整个铸轧设备的工作部分。因此,铸轧机机架要有- 14 -足够的强度和刚度,其结构要满足铸轧机零部件装卸和换辊的需要。铸轧机机架依结构可分为闭式机架和开式机架两种。其中,因闭式机架具有较好的强度和刚度,其应用最为广泛。在此次设计中亦选择闭式机架作为铸轧机工作机架。其结构形式如图 3.3 所示。图 3.3 闭式机架结构B机架窗口宽度;H机架窗口高度;l机架立柱高度; b机架立柱宽度机架主要结构参数包括:窗口宽度 B、窗口高度 H 和机架立柱的横断面面积F(F= lb) 。其中,为了便于换辊,窗口宽度应稍大于轧辊最大直径;机架窗口高度主要依据铸轧机最大开口度、轴承和轴承座径向厚度、压下螺丝最小伸出端(至少 2-3 扣螺纹) 、余量系数以及换辊等要求制定。一般设计公式为:21321S(3.15)式中 H1两轧辊接触时,上下轴承座间的最大距离, mm;H2安全臼以及均压块高度,mm;H3下轴承座底垫板高度,mm;S1轧辊换辊时的最大开口度,mm;S2机架窗口高度尺寸余量,通常取 150250mm。- 15 -在设计中对以上参数依据设计要求进行了选择性应用,则有H1=1185mm, H2=85mm,H 3=130mm。故机架窗口高度 H=1400mm。机架窗口宽度 B:取 B=600mmD=500mm,保留适当换辊间隙。机架立柱横截面面积 F:根据厂家设计经验,立柱横截面积最佳为矩形截面,此处也采用矩形截面。依经验公式,横截面积 F 与轧辊辊径尺寸关系:F=d2 (3.16)式中 d辊径尺寸,d=260mm。则有 F=2602=67600(mm 2) 。为避免轧件轧出时与立柱相碰,l 应小于轴承座宽度,取 l=360mm,则 b=,圆整 b=200mm。)(8.17360m3.3.2 铸轧机机架强度校核由于铸轧机机架结构比较复杂, ,不易进行精确强度计算,故将其视为一平面刚架,求出框架的静不定力矩,继而对机架进行强度校核。(1) 静不定力矩 M0:机架受力变形时,上下横梁中间的挠角为零, ,可把平面刚架进一步简化为悬臂支架,下横梁中间截面固定,上横梁中间截面作用有 P/2 和静不定力矩 M0,如图3.4 所示。有变形协调条件,M 0 应保证上横梁转角为零,以求和原来的刚架等效。由 =0即可求得静不定力矩 M0.由单位力法求变形,得:(3.17)dxEIM上横梁: 02MxP(3.18) 1x- 16 -图 3.4 机架简化简图及弯矩图立柱: ( ) 01022MlpPMx21lx(3.19) x下横梁: (3.20)02Px1xM式中 M x机架计算横截面由力 P/2 和 M0 产生的弯矩;、单位力矩 在计算截面产生的弯矩; 1xIx计算截面的惯性矩;E材料的弹性模量;x机架中心线至计算截面的水平距离。将上面的结果分别代入方程(3.17)并积分求出静不定力矩 M0:321321044IlIlPM- 17 -(3.21)式中 l1,l2机架横梁和立柱轴线长度。又由于上下横梁截面相等,则惯性矩相等,即 I1=I3,而 l1=l3,则上式可简化为(3.22)212104IlPlM代入数据得:M 0=1.03106(N.m),则 M1=M3=(1.17-1.03) 106=0.14106(N.m)则 M2=0.14106(N.m)(2)机架强度校核:由弯矩图可知,立柱的各处均受同样的弯拉联合作用,但在立柱与横梁交界处存在危险截面,此处易产生应力集中。在横梁的中部存在危险截面,但此处仅存在弯矩。立柱中应力计算:内表面: (3.23)22nnWMFP外表面: (3.24)22ww式中 2n, 2w分别为立柱内外表面计算应力,MPa;F立柱断面面积,mm 2,F=360200=7.210 4(mm2);W2n,W2w分别为机架立柱内侧和外侧的断面系数 ,mm 3.W2n=W2w=1.76107(mm3)机架材料的许用应力,=40MPa则代入数据:P=3.910 6N,M 2=0.14106N.m,有2n=16.8MPa=40MPa2w=3.65MPa=40MPa横梁中应力计算:(3.25)1W- 18 -式中 横梁中应力,Mpa;W1横梁截面系数,mm 3.W1=3.7107mm3带入数据得:=43.67Mpa=50Mpa经校核计算机架强度满足要求。3.4 铸轧辊调整装置3.4.1 轧辊调整装置(1)轧辊调整装置的作用1. 轧辊的调整装置式轧机中重要的部件,其主要作用为:2. 调整辊缝,保证轧件按预设的压下量轧制出尺寸相符的带材;3. 调整轧辊在生产线上与辊道水平面的相对位置高度;4. 调整轧机上机座内两轧辊的相对位置;5. 通过调整轧辊的轴向或径向位置,来改变辊形控制板形。(2)轧辊调整装置的选择轧辊的调整装置有轴向和径向两种调整装置,其设计好坏直接关系到产品的质量和铸轧机的作业量。在铸轧机设计时只需要考虑径向调整即可。径向调整装置是由压下装置(包括推上和测压装置)与平衡装置组成。在常见的纵轧机中可看到压下机构,仅在斜轧机和立轧辊调整机构可看到测压机构。压下装置分为:手动、电动、电-液以及全液压压下机构。设计的铸轧机轧辊不需经常性的调整,轧件精度已要求不太严格,且轧制速度低,故采用电动压下装置。电动压下装置由电动机通过调整圆柱齿轮减速箱或涡轮减速箱传递运动,其应用比较广泛。装置包括电动机、减速器、压下螺丝、压下螺母和球面垫等部件组成。设计中铸轧机轧辊的调整为上辊调整装置。其工作原理为:首先,在机架窗口垫上垫块组,调整好后放上下轧辊及其轴承座,再在下轴承座上部放置垫块组,达到要求后放置上轧辊及其轴承座。这时开动压下装置对上轴承座施加预压力,通过弹簧式平衡和提升装置来调整辊缝缝隙。(3)压下装置主要部件计算压下螺丝:螺纹外径 d0 和螺距 t 参考原机械部部颁标准选择压下螺丝最小截面直径 d1 由最大轧制力确定,由下式确定:- 19 -41Pd(3.26)式中 P作用于压下螺丝的轧制力,N,P=3.910 6N;压下螺丝的许用压应力,MPa,=100125MPa,此处取125MPa。计算并圆整得 d1=135(mm) 。压下螺丝外径:由于压下螺丝所受的轴向力为作用于轧辊辊径的力,故有压下螺丝直径与辊径直径间关系式:dd)62.05.((3.27)式中 d压下螺丝外径,mm;轧辊辊径直径,mm, =260mm。 d计算得 d=143161.2mm,取 d=150mm。压下螺母:压下螺母高度 H:其高度按螺纹的许用单位压力 1520MPa 确定。计算公式如下:H=(1.23)d (3.28)式中 d压下螺丝的螺纹外径,mm;计算得 H=180450mm,取 H=180mm。压下螺母外径 D 根据其端面与机架横梁接触面的压力 p来确定。在p=6080MPa是的计算公式如下:D=(1.51.8)d (3.29)式中 d压下螺母外径,mm,d=150mm。计算得 D=225270mm,取 D=240mm。压下螺母与机架的镗孔配合,考虑到更换方便,通常取 H8/h8,并采用压板嵌在螺母和机架的凹槽内,用螺钉固定防止螺母从机架内脱出和在机架内转动。(4)传动压下螺丝的扭矩及功率计算传动压下螺丝需要克服压下螺丝和螺母摞文件的摩擦力矩以及压下头部止推轴承处的静摩擦力矩。静摩擦力矩计算:Mj=M1+M2 - 20 -(3.30)式中 M1压下螺丝头部止推轴承处的摩擦力矩;M2压下螺丝和螺母摞文件的摩擦力矩。M1 计算: 31fPdM(3.31)式中 f压下螺丝端部与球面垫摩擦系数,f=0.2;d3压下螺丝头部直径,mm,d 3=140mm.计算得:M 1=36.4103(N )M2 计算: 2)tan(2dPM(3.32)式中 P作用于压下螺丝的轴向力,P=3.910 6N;螺纹间的摩擦角, =540;螺纹升角, ,其中 d,t 分别为螺纹直径和螺距;td2压下螺丝和螺母螺纹直径,mm。计算得:M 2=0.39106(N )则有 Mj=42.64104(N) 。(5)电动机功率计算(3.33)iMnj950式中 n电机转速,r/min, n=1400r/min;压下传动系统的总传动装置的功率,取 0.85;i系统传动比。计算得:N=1838.5(W )3.4.2 铸轧辊平衡装置(1)铸轧辊平衡的目的铸轧机装配完毕后,各零部件之间存在着不同程度的间隙,在铸轧机空载情况下,各零件在自重的影响下,这种间隙必然会使部件之间产生冲击,且在轧制过程中随轧制速度的提高,冲击现象将更为显著。其结果将导致铸轧机相关部件使用寿- 21 -命降低,不能在预定任务而提前报废,降低了铸轧机生产率,也将使得轧制的板带材料产生波浪、擦伤表面等负面影响,降低板带材的质量。因此,就需要合理的平衡力来消除系统中的滞后现象,以提高轧制板的质量。(2)铸轧辊平衡装置的选择在铸轧机上常见的平衡装置类型有:弹簧式、重锤式、液压式、以及弹性胶体等 4 种形式。设计中采用的是弹簧式平衡装置,其结构特点如下:装置结构较为简单、工作性能比较可靠,经济性比较好;但是换辊时要人工拆装弹簧,换辊时间长。3.5 铸轧机换辊装置3.5.1 换辊目的在铸轧生产中,为保证铸轧带材的质量,在铸轧辊被磨损、破坏或者产品规格变更时,都需及时换辊,以保证生产。 设计的铸轧机,铸轧速度较低,对铸轧件精度控制不严格,故其换辊次数不频繁。通常 2-3 个月根据需要换辊一次即可。3.5.2 换辊装置目前,换辊装置依据换辊速度的快慢可分为一般换辊机构和快速换辊机构两类。一般换辊机构又可分为:1. 吊车直接换辊;2. C 型钩式换辊装置;3. 滑架和小车换辊装置快速换辊装置是将换辊过程实现程序化控制,自动化程度加大,速度换辊时间,提高了劳动生产率。其也可分为:1. 横移式快速换辊;2. 回转式快速换辊;3. 多机座动态式换辊。在设计中采用一般换辊装置中的吊车直接换辊装置。- 22 -4 铸轧机传动系统 铸轧机主机列包括工作机座、传动系统和电动机三个部分。其中,传动系统位于电动机和工作机之间,把动力传输给工作机,使其运行。4.1 传动系统传动方式目前铸轧机列的形式主要依据铸轧机的传动方式可分为联合传动和单独传动两种类型。(1)联合传动这种传动亦可分为直串布置和往复布置两类,直串布置的特点如下:电流电压双闭环,两个铸轧辊联合传动,同步性好,安装调试方便,速比大;- 23 -当上下铸轧辊辊径发生偏差,无法单独调整,且占地面积大。往复布置特点:两个铸轧辊联合传动,同步性好,速比较直串要小,排列较紧凑,占地面积较直串要小,亦有和直串布置一样的缺点。(2)单独传动这种传动是每个轧辊各有一套传动路线,与联合传动相比省去了齿轮分齿箱,结构较为紧凑,占地面积也较小,但是上下辊之间须有同步控制系统。经对比选择联合传动中的直串布置来传递动力。其结构图如图 4.1:图 4.1 直串布置示意图1铸轧机;2分齿箱;3减速器;4电动机4.2 连接轴 铸轧机常用的连接轴有万向接轴、梅花接轴、联合接轴(一端为万向接轴,另一端为梅花接轴)和弧形齿接轴等几种形式,现在梅花接轴在老式铸轧机上还有应用,基本上趋于淘汰。各个连接轴用途、特点和允许倾角见表 4.1表 4.1 各个连接轴的用途、特点和允许倾角类 型 用 途 特 点 允许倾角梅花接轴 横列式轧机 结构简单,运转噪声大 12滑块式万向接轴冷轧机,管材轧机,中厚板轧机,冷、热板带轧机可传递较大扭矩,垫板磨损快,润滑条件差 810十字轴式万向接轴型材轧机,冷、热板带轧机,管材轧机允许倾角大,传递扭矩大,润滑条件好,运行平稳 812弧形齿接轴 板带精轧机传递扭矩较大,润滑条件好,运行平稳,允许较小倾角和一定位移 13经上表分析与实际生产结合,由于弧形齿接轴加工比较复杂,且倾角不能太大,- 24 -故选用十字式万向接轴。目前此接轴已在行业中趋于标准化生产,故采用标准系列。4.3 减速器 减速器是在分齿箱和电动机之间的动力降速机构,设计中对减速器不在自行设计,采用现在厂商生产的型号选用。此处选择 ZLY 型减速器(执行标准为ZBJ1900488)其参数如表 4.2。表 4.2 选用减速器参数公称传动比 i 公称转速,r/min 低速级中心距,mm 输入功率 P,KW输入 输出20750 38224 554.4 联轴器在电动机和减速器以及减速器与分齿箱之间都需要联轴器来传递扭矩。由于齿轮联轴器结构简单、紧凑、制造方便且有很高的精度,有补偿两轴综合位移的能力,适用于重型机械连接,故此处采用齿轮联轴器作为电动机到工作机的联轴器。由于机械不稳定运行动载荷影响及联轴器自身结构特点,联轴器计算转矩 Tc 按公式 4.1 计算:(4.1)ncTK式中 T名义转矩, N.m;Tn联轴器额定转矩, N.m;K工况系数。选择的联轴器型号为:电动机与减速器之间的联轴器:GICL4 联轴器 JB/T8854.3200184210765J减速器与分齿箱之间的联轴器:GICL8 联轴器 JB/T8854.320011670经校核计算两联轴其均符合要求。- 25 -
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房颤基础知识试题及答案
- 育婴员考试题及答案
- 药学基础知识普及试题及答案
- 药物与食物相互作用研究试题及答案
- 单位招聘面试题及答案
- 色觉标准 测试题及答案
- 西医临床应试策略与分析试题及答案
- 数控编程笔试题目及答案
- 文职转岗测试题及答案
- 药剂类考试分科试题及答案分析
- 福建师范大学《聚合物表征与测试》2023-2024学年第一学期期末试卷
- 《国家中长期教育改革和发展规划纲要》-20211107172134
- 麻风分枝杆菌感染
- 落实《中小学德育工作指南》制定的实施方案(pdf版)
- 案例分析肥胖症课件
- 第七章-沥青和沥青混合料
- 人教版数学四年级下册3运算定律《解决问题策略的多样性》说课稿
- 2024新冀教版英语初一上单词默写表
- 胖东来企业文化指导手册
- 求是文章《开创我国高质量发展新局面》专题课件
- 智慧家庭健康监测系统设计与实现
评论
0/150
提交评论