极大无关组求法.ppt_第1页
极大无关组求法.ppt_第2页
极大无关组求法.ppt_第3页
极大无关组求法.ppt_第4页
极大无关组求法.ppt_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

方法1线性相关法 若非零向量组A 1 2 n线性无关 则A的极大无关组就是 1 2 n 若非零向量组A线性相关 则A中必有极大无关组 方法2逐个判别法 给定一个非零向量组A 1 2 n 1设 1 0 则 1线性相关 保留 1 2加入 2 若 2与 1线性相关 去掉 2 若 2与 1线性无关 保留 1 2 3依次进行下去 最后求出的向量组就是所求的极大无关组 求A的极大无关组 解 因为a1非零 故保留a1 取a2 因为a1与a2线性无关 故保留a1 a2 取a3 易得a3 2a1 a2线性无关 故线性相关 所以极大无关组为a1 a2 初等行变换保持了列向量间的线性无关性和线性表出性 方法3初等变换法 可以证明 若对矩阵A仅施以初等行变换得矩阵B 则B的列向量组与A的列向量组间有相同的线性关系 行变换对列没有影响 即初等行变换保持了列向量间的线性无关性和线性表出性 同理 也可以用向量组中各向量为行向量组成矩阵 通过做初等列变换来求向量组的极大无关组 1 以向量组中各向量为列向量构成矩阵A 2 对A做初等行变换将该矩阵化为行阶梯形矩阵 则可求出r A r 向量组的秩为r 说明向量组中线性无关的向量最多有r个 任何r 1个线性相关 3 在A中找出r个线性无关的向量即是所求向量组的极大无关组 这一步需将行阶梯型化为行最简形 由此提供了求向量组的极大无关组的方法 例求向量组 1 2 1 3 1 T 2 3 1 2 0 T 3 1 3 4 2 T 4 4 3 1 1 T 的秩和一个极大无关组 并把不属于极大无关组的向量用极大无关组线性表示 解以 1 2 3 4为列构造矩阵A 并实施初等行变换化为行阶梯形矩阵求其秩 知r A 2 故向量组的极大无关组含2个向量而两个非零行的非零首元分别在第1 2列 故 1 2为向量组的一个极大无关组 事实上 知r 1 2 2 故 1 2线性无关 求极大无关组方法 找阶梯型矩阵非零行的非零首元所在的列 为把 3 4用 1 2线性表示 把A变成行最简形矩阵 记矩阵B 1 2 3 4 因为初等行变换保持了列向量间的线性表出性 因此向量 1 2 3 4与向量 1 2 3 4之间有相同的线性关系 因此 3 2 1 2 4 1 2 2 将A化为一个行最简形矩阵B 是因为较容易看

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论