勾股定理复习(提高篇)ppt课件.ppt_第1页
勾股定理复习(提高篇)ppt课件.ppt_第2页
勾股定理复习(提高篇)ppt课件.ppt_第3页
勾股定理复习(提高篇)ppt课件.ppt_第4页
勾股定理复习(提高篇)ppt课件.ppt_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新学期新班级八年级争第一勾股定理要牢记坚决不忘逆定理 第一章勾股定理回顾与思考 八年级数学组 学习目标 1 会用勾股定理及逆定理解决实际问题 2 体会转化思想和数形结合思想在数学中的应用 一 知识要点 如果直角三角形两直角边分别为a b 斜边为c 那么有 勾股定理 a2 b2 c2 即直角三角形两直角边的平方和等于斜边的平方 例 在Rt ABC中 C 90 1 若a 3 b 4 则c 2 若c 34 a b 8 15 则a b 例2 已知Rt ABC中 C 90 若a b 14cm c 10cm 求Rt ABC的面积 勾股逆定理 如果三角形的三边长a b c满足a2 b2 c2 那么这个三角形是直角三角形 1 已知三角形的三边长为9 12 15 则这个三角形的最大角是度 2 若 ABC中 AB 5 BC 12 AC 13 则AC边上的高为 例1 例2 形 勾股数 满足a2 b2 c2的三个正整数 称为勾股数 例1 请完成以下未完成的勾股数 1 8 15 2 10 26 3 7 25 例2 观察下列表格 请你结合该表格及相关知识 求出b c的值 即b c 例3 如图 四边形ABCD中 AB 3 BC 4 CD 12 AD 13 B 90 求四边形ABCD的面积 3 4 12 13 变式有一块田地的形状和尺寸如图所示 试求它的面积 A B C D 5 例7 假期中 王强和同学到某海岛上去玩探宝游戏 按照探宝图 他们登陆后先往东走8千米 又往北走2千米 遇到障碍后又往西走3千米 在折向北走到6千米处往东一拐 仅走1千米就找到宝藏 问登陆点A到宝藏埋藏点B的距离是多少千米 C 专题一分类思想 1 直角三角形中 已知两边长 不知道是直角边 斜边时 应分类讨论 2 当已知条件中没有给出图形时 应认真读句画图 避免遗漏另一种情况 2 三角形ABC中 AB 10 AC 17 BC边上的高线AD 8 求BC 1 已知 直角三角形的三边长分别是3 4 X 则X2 25 或7 高线 三边长 专题二方程思想 直角三角形中 当无法已知两边求第三边时 应采用间接求解法 灵活地寻找题中的等量关系 利用勾股定理列方程 1 小东拿着一根长竹竿进一个宽为 米的城门 他先横拿着进不去 又竖起来拿 结果竹竿比城门高 米 当他把竹竿斜着时 两端刚好顶着城门的对角 问竹竿长多少 x 1m x 1 3 专题三折叠 折叠和轴对称密不可分 利用折叠前后图形全等 找到对应边 对应角相等便可顺利解决折叠问题 1 如图 一块直角三角形的纸片 两直角边AC 6 BC 8 现将直角边AC沿直线AD折叠 使它落在斜边AB上 且与AE重合 求CD的长 A C D B E 第8题图 x 6 x 8 x 4 6 8 10 2 三角形ABC是等腰三角形AB AC 13 BC 10 将AB向AC方向对折 再将CD折叠到CA边上 折痕CE 求三角形ACE的面积 A B C D D C A D1 E 13 5 12 5 12 x 5 x x 8 3 折叠矩形ABCD的一边AD 点D落在BC边上的点F处 已知AB 8CM BC 10CM 求CF和EC的长度 A B C D E F 8 10 10 6 X 8 X 4 8 X 1 几何体的表面路径最短的问题 一般展开表面成平面 2 利用两点之间线段最短 及勾股定理求解 专题四展开思想 1 如图 一圆柱高8cm 底面半径2cm 一只蚂蚁从点A爬到点B处吃食 要爬行的最短路程 取3 是 A 20cmB 10cmC 14cmD 无法确定 B B 8 O A 2 蛋糕 A C B 周长的一半 2 如图 正方体的棱长为 cm 一只蚂蚁欲从正方体底面上的顶点A沿正方体的表面到顶点C 处吃食物 那么它需要爬行的最短路程的长是多少 16 3 如图是一个三级台阶 它的每一级的长宽和高分别为20dm 3dm 2dm A和B是这个台阶两个相对的端点 A点有一只蚂蚁 想到B点去吃可口的食物 则蚂蚁沿着台阶面爬到B点最短路程是多少 3 2 3 2 3 AB2 AC2 BC2 625 AB 25 4 如图 长方体的长为15cm 宽为10cm 高为20cm 点B离点C5cm 一只蚂蚁如果要沿着长方体的表面从点A爬到点B 需要爬行的最短距离是多少 10 20 1 几何体的内部路径最值的问题 一般画出几何体截面 2 利用两点之间线段最短 及勾股定理求解 专题五截面中的勾股定理 小明家住在18层的高楼 一天 他与妈妈去买竹竿 买最长的吧 快点回家 好用它凉衣服 糟糕 太长了 放不进去 如果电梯的长 宽 高分别是1 5米 1 5米 2 2米 那么 能放入电梯内的竹竿的最大长度大约是多少米 你能估计出小明买的竹竿至少是多少米吗 x X2 1 52 1 52 4 5 AB2 2 22 X2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论