《北邮复变函数》PPT课件.ppt_第1页
《北邮复变函数》PPT课件.ppt_第2页
《北邮复变函数》PPT课件.ppt_第3页
《北邮复变函数》PPT课件.ppt_第4页
《北邮复变函数》PPT课件.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3泰勒 Taylor 级数 第四章级数 两类问题 在收敛圆域内 解析函数 一 泰勒定理 其中 泰勒级数 泰勒展开式 泰勒介绍 如图 由柯西积分公式 有 其中K取正方向 则 证明 由高阶导数公式 上式又可写成 其中 可知在K内 令 则在K上连续 即存在一个正常数M 从而在K内 泰勒级数 由上讨论得重要定理 泰勒展开定理 说明 1 复变函数展开为泰勒级数的条件要比实函数时弱得多 想一想 为什么 4 任何解析函数在一点的泰勒级数是唯一的 为什么 因为解析 可以保证无限次各阶导数的连续性 所以复变函数展为泰勒级数的实用范围就要比实变函数广阔的多 注意 问题 利用泰勒级数可以将函数展开为幂级数 展开式是否唯一 那末 即 因此 任何解析函数展开成幂级数的结果就是泰勒级数 因而是唯一的 二 将函数展开成泰勒级数 常用方法 直接法和间接法 1 直接法 由泰勒展开定理计算系数 例如 故有 仿照上例 2 间接展开法 借助于一些已知函数的展开式 结合解析函数的性质 幂级数运算性质 逐项求导 积分等 和其它数学技巧 代换等 求函数的泰勒展开式 间接法的优点 不需要求各阶导数与收敛半径 因而比直接展开更为简洁 使用范围也更为广泛 例如 附 常见函数的泰勒展开式 例1 解 上式两边逐项求导 例2 解 例3 解 例4 解 即微分方程 对微分方程逐次求导得 奇 偶函数的泰勒级数有什么特点 思考题 奇函数的泰勒级数只含z的奇次幂项 偶函数的泰勒级数只含z的偶次幂项 思考题答案 放映结束 按Esc退出 泰勒资料 Born 18Aug1685inEdmonton Middlesex EnglandDied 29Dec1731inSom

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论