已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
勾股定理说课稿jyw 勾股定理说课稿 一、说教材 1、教学内容苏科版义务教育课程标准实验教科书数学八年级(上册)第44-47页的内容勾股定理。 2、教材分析勾股定理苏科版实验教科书数学八年级上册第二章的起始课,它是在学生已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,它是解直角三角形的主要根据之一,是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,它将形与数密切联系起来,在数学的发展中起过重要的作用,在现实世界中也有着广泛的作用。 由此可见,勾股定理是对直角三角形进一步的认识和理解,是后续学习的基础。 因此,本节内容在整个知识体系中起着重要的作用。 3、教学目标 (1)了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理 (2)经历“观察猜想归纳验证”的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会“数形结合”和“特殊到一般”的思想方法。 (3)通过介绍中国古代研究勾股定理的成就,激发学生的爱国热情,感受数学文化,激发学生学习的热情。 4、教学重、难点教学重点勾股定理的探讨。 教学难点利用数形结合的方法验证勾股定理。 5教具准备教具课件、方格纸 二、说教法、学法1.教法数学课程标准提出,“本学段(7-9)年级的教学应结合具体的数学内容,采用问题情景-建立模型-解释、应用与拓展的模式展开,应加强数学与学生的生活经验相联系”针对初二年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,从学生熟知、感兴趣的生活事例出发,以生活实践为依托,将生活经验数学化,由特殊到一般地提出问题。 引导学生自主探索,合作交流,促进学生的主动参与,让学生经历数学知识的形成与应用过程,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,焕发出数学课堂的活力。 2.学法在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。 课本的知识是有限的,而五彩缤纷的生活所提供的却是无限的。 在课改中本着促进学生发展的宗旨,让学生在生活中观察、猜测,在自主探索与合作交流中,创造出自己的数学生活中的数学,时时感受到“无处不在的数学”与数学美,进一步体会数学的地位与作用。 三、说教学程序设计1)创设情境以趣引新一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?(提出问题,设置悬念,提高学生的学习积极性)2)实践探索猜想归纳 1、请同学们观察课件上的图,并回答问题根据计算正方形的面积来探索勾股定理,此处重在引导学生如何计算出以斜边为边的正方形的面积.学生可能会利用补,割,旋转,等方法算出,从而发现三个正方形的面积之间的数量关系,这样学生通过正方形面积之间的关系主动建立了由形到数,由数到形的联想,同时也初步感受到对于直角三角形而言,三边满足两直角边的平方和等于斜边的平方。 (这样的设计有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想,同时在合作交流中也突破了本节课的一大难点。 ) 2、提出问题:是否所有的直角三角形都有这个性质呢先让学生大胆猜想,再让学生在准备好的方格纸上,任意画一个顶点都在格点上的直角三角形,进行验证.仿照上面的方法,学生容易进行类比联想,猜想结论成立,同样分别以各边为边向三角形外作正方形,通过计算这三个正方形的面积来验证猜想.教师可通过表格的形式展示部分学生的实验结果,从而为归纳提供基础,学生也更容易发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。 (这样设计不仅有利于突出重点,而且让学生体会到观察,猜想,归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高。 ) 3、得出结论:勾股定理直角三角形两直角边的平方和等于斜边的平方。 符号语言:在RtABC中,C90AB2?BC2?AC2或a?b?c222(此处还要引导学生用符号语言表示勾股定理,因为将文字语言转化为数学语言是数学学习的一项基本能力。 )在整个这一过程中,通过对一个已知边长的直角三角形到一般直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象,概括的能力是有益的,同时让学生经历前人发现这一结论时大致相同的思考过程,让学生在长知识的同时,也长了智慧,培养了良好的思维品质。 至此,学生通过动手操作,在自主探究与合作交流中发现了勾股定理,也自然的突破了本节课的重点与难点。 4、介绍勾,股,弦的含义,进行点题,并指出勾股定理只适用于直角三角形;3)学以致用体验成功 1、学生从中能体会到成功的喜悦,再做生活中的实例,进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。 2、介绍勾股定理的史料(这样可让学生更好地体会勾股定理的丰富内涵与文化背景,陶冶情操,丰富自我,从中得到深层次的发展。 )4)总结回顾内化提高 (1)请你说说勾股定理; (2)勾
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024材料供应合同模板
- 2024年度咨询服务合同标的:企业管理咨询
- 2024年度城市轨道交通设备销售合同
- 2024年度企业广告发布合同具体条款
- 2024年品牌经理合作协议
- 2024年双层隔音门窗制作安装合同
- 2024年城市供水供电设施建设与运营合同
- 2024年度垃圾清运服务合同
- 2024年度智能工厂设计与建造合同
- 2024年度八宝山殡仪馆鲜花制品供应商资质审核与评估合同
- ISO20000认证-ISO20000差距分析报告
- GB/T 42195-2022老年人能力评估规范
- 第三章 信息系统的网络组建- 复习课件 2021-2022学年粤教版(2019)高中信息技术必修2
- GB/T 4909.4-2009裸电线试验方法第4部分:扭转试验
- 佛七精进念佛容易着魔请看祖师开示及个人感悟
- 中小学教师信息技术培训
- 幼儿园中班科学活动教案《奇妙的感官》
- 环境保护相关知识培训专题培训课件
- 复变函数与积分变换全套课件
- 儿科常用药物与急救药物-换算方法课件
- 压花制作(观赏植物学)课件
评论
0/150
提交评论