




已阅读5页,还剩219页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2016 年 (人教版 )八年级数学下册全册完整教案 第十六章 分式 16 1 分式 分数到分式 一、 教学目标 1 了解分式、有理式的概念 . 2理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件 . 二、重 点、难点 1重点: 理解分式有意义的条件,分式的值为零的条件 . 2难点: 能熟练地求出分式有意义的条件,分式的值为零的条件 . 三、课堂引入 1让学生填写 考 ,学生自己依次填出:710,3200,2学生看 问题:一艘轮船在静水中的最大航速为 20千米 /时,它沿江以最大航速顺流航行 100 千米所用实践,与以最大航速逆流航行 60千米所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程 . 设江水的流速为 x 千米 /时 . 轮船顺流航行 100 千米所用的时间为v20100小时,逆流航行 60千米所用时间v2060小时,所以v20100=v2060. 3. 以上的式子v20100,v2060,as,什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解 . 当 x 为何值时,分式有意义 . 分析 已知分式有意义,就可以知道分式的分母不为零,进 2 一步解 出字母 x 的取值范围 . 提问 如果题目为:当 x 为何值时,分式无意义 样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念 . (补充 )例 2. 当 式的值为 0? ( 1) ( 2) (3) 分析 分式的值为 0 时,必须 同时 满足两个条件: 1 分母不能为零; 2 分子为零,这样求出的 m 的解集中的公共部分,就是这类题目的解 . 答案 ( 1) m=0 ( 2) m=2 ( 3) m=1 六、随堂练习 1判 断下列各式哪些是整式,哪些是分式? 9x+4, 209 y, 54m, 238 2. 当 x 取何值时,下列分式有意义? ( 1) ( 2) ( 3) 3. 当 x 为何值时,分式的值为 0? ( 1) ( 2) (3) 七、课后练习 数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做 x 个零件,则他 8 小时做零件 个,做80个零件需 小时 . ( 2)轮船在静水中每小时走 a 千米,水流的速度是 b 千米 /时,轮船的顺流速度是 千米 /时,轮船的逆流速度是 千米 /时 . (3)x 与 y 的差于 4 的商是 . 12122322 123 12 2 当 x 取何值时,分式 无意义? 3. 当 x 为何值时,分式 的值为 0? 八、答案: 六、 9x+4, 209 y, 54 23891(1) x ( 2) x ( 3) x 2 3 ( 1) x= ( 2) x=0 (3)x=、 1 18x, ,a+b, 4 整式: 8x, a+b, 4 分式: X = 3. x=业: 练习册 第 1 页到第 2 页 课后反思: 组长签字: 2 1 4 月 日 式的基本性质 (一 ) 一、 教学目标 1理解 分 式的基本性质 . 2会用 分式的基本性质将分式变形 . 二、 重点、难点 1重点 : 理解 分 式的基本性质 . 2难点 : 灵活应用 分式的基本性质将分式变形 . 三、例、习题的意图分析 1 是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变 . 四、课堂引入 1请同学们考虑: 与 相等吗? 与 相等吗?为什么? 2说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3提问分数的基本性质,让学生类比猜想 出分式的基本性质 . 五、例题讲解 43 2015 249 8343 2015 249 83 5 分析 应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变 . 六、随堂练习 1填空: (1) xx 3x(2) 32386 33a ( 3) 1= 4) 222 = 七、课后练习 1判断下列约分是否正确: ( 1)cb =2)22 = ( 3)nm =0 八、答案: 六、 1 (1)2x (2) 4b ( 3) bn+n (4)x+y 作业: 课后反思: 组长签字: 6 月 日 式的基本性质 (二 ) 一、 教学目标 1理解 分 式的基本性质 . 2会用 分式的基本性质将分式变形 . 二、 重点、难点 1重点 : 理解 分式的基本性质 . 2难点 : 灵活应用 分式的基本性质将分式变形 . 三、例、习题的意图分析 1 、例 4 地目的是进一步运用分式的基本性质进行约分、通分 分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最 小公倍数,以及所有因式的最高次幂的积,作为最简公分母 . 教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解 . 2 题 题是:不改变分式的值,使下列分式的分子和分母都不含“ -”号 它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变 . “不改变分式的值,使分式的分子和分母都不含 -号”是分式的基本性质的应用之一,所以补充例 5. 四、课堂引入 提问分式的基本性质 是什么? 五、例题讲解 约分: 7 分析 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变 分的结果要是最简分式 . 通分: 分析 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母 . (补充)例 下列分式的分子和分母都不含“ -”号 . , 2, , 。 分析 每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变 . 解:= 2= = = 六、随堂练习 1约分: ( 1)263( 2)22283)532164 ( 4) 3)(2 2通分: ( 1)321 ( 2) ( 3)22328 ( 4)11改变分式的值,使下列分式的分子和分母都不含“ -”号 . (1) 233(2) 2317( 3) 2135 (4) m )( 8 七、课后练习 1通分: ( 1)231 ( 2) 21 和 21 2不改变分式的值,使分子第一项系数为正,分式本身不带“ -”号 . ( 1)ba 2( 2)yx 3 2八、答案: 六、 1( 1)2)3)24 ( 4)-2( 2通分: ( 1)321 ( 2) 23 3)223 223812 = 228 ( 4)11y=)1)(1( 1 yy y=)1)(1( 1 yy (1) 233) 2317 3) 2135 (4) )( 作业: 第 2 页到第 4 页 课后反思: 组长签字: 9 月 日 习题 、 教学目标: 复习巩固分 式 的定义 、 分式有意义的条件 、 约分,通分 、 分式的基本性质 。 二、课时安排: 本习题的内容分讲三 课时。 第一课时:习题的第 1、 2、 3、 4 题。 第二课时:习题的第 5、 6、 7、 8 题。 第三课时:习题的第 9、 10、 11、 12、 13题。 三、每课时的教学目标 : 第一课时: 第 1、 2 复习巩固分式的定义; 第 3 题 复习巩固 分式有意义的条件 ; 第 4 题 复习巩固约分 。 第二课时 : 第 5 题复习巩固分式的基本性质,并引导学生自己研究分式的变号法则; 第 6 题复习巩固约分; 第 7 题复习巩固通分; 第 8 题要通过解带有“”号的二次不等式,讨论分式有意义的条件。 10 第三课时 : 第 9 题要分析实际问题中的数量关系,然后列出分式; 第 10题先分析实际问题中的数量关系,然后列出分式,最后通分; 第 11题 先分析实际问题中的数量关系,然后列出分式, 最后约分 。 第 12题要先判断对错,然后改错。这从反、正两方面加深对约分的认识,预防常见错误。 第 13题 要在分式有意义的前提下 考虑分式何时为 0,这既需要解方程,又需要考虑所得方程的解是否使分式有意义。 作业: 第 4 页到第 5 页 课后反思: 组长签字: 11 月 日 16 2 分式的运算 16 2 1 分式的乘除 (一 ) 一、 教学目标: 理解分式乘除法的法则,会进行分式乘除运算 . 二、 重点、难点 1重点: 会用分式乘除的法则进行运算 . 2难点: 灵活运用分式乘除的法则进行运算 . 三、例、习题的意图分析 1 节的引入还是用问题 1 求容积的高,问题 2 求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是,大拖拉机的工作效率是小拖拉机 的工作效率的 一步引出 察 从分数的乘除法引导学生类比出分式的乘除法的法则 式子时,不易耽误太多时间 . 2 1 应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简 . 3 2 是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分 . 4 3 是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知 a1,因此(=1,因此(=,即 (得出“丰收 2 号”单位面积产量高 . 六、随堂练习 13 计算 ( 1) ( 2)322542 ( 3) 7( 4) 5)44 112 4 2222 aa a(6)3(2 962 yy 七、课后练习 计算 ( 1) yx 32( 2) 11035 2( 3) 8512 ( 4)ba 3 4222( 5) )4(12 xx ( 6)3222 )(35)(42 xy xx 八、答案: 六、 ( 1) ( 2) 3)14y( 4) ( 5))2)(1( )2)(1( aa 6)23y ( 1) 2)227 3) 4) 5)( 6)2)(5 )(6 yx 作业: 第 5 页到第 6 页 课后反思: 组长签 字: 14 月 日 16 2 1 分式的乘除 (二 ) 一、 教学目标: 熟练地进行分式乘除法的混合运算 . 二、 重点、难点 1重点: 熟练地进行分式乘除法的混合运算 . 2难点: 熟练地进行分式乘除法的混合运算 . 三、例、习题的意图分析 1 例 4 是分式乘除法的混合运算 . 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式 . 教材 4 只把运算统一乘法,而没有把 25解因式 ,就得出了最后的结果,教师在见解是不要跳 步太快,以免学习有困难的学生理解不了,造成新的疑点 . 2, 例 4 中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题 . 四、课堂引入 计算 ( 1))( (2) )21()3(43 五、例题讲解 ( 分析 是分式乘除法的混合运算 . 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注 意最后的计算结果要是最简的 . (补充)例 (1)4(3)98(23232 15 =8(23232 (先把除法统一成乘法运算 ) = (判断运算的符号) =32916分到最简分式) (2) 3 )2)(3()3(444 62 2= 3 )2)(3(31444 62 2(先把除法统一成乘法运算 ) = 3 )2)(3(31)2( )3(2 2(分子、分母中的多项式分解因式 ) =)3( )2)(3(31)2( )3(2 2 x x=22堂练习 计算 (1) )2(2163 22( 2)10332642 3020)6(2 5 ba c ( 3) 9)()()(3 432 ( 4)2222 2)( 七、课后练习 计算 (1) )6(438 2642 (2) 93234 96 222 (3)229612316244 (4)222 )( 16 八、答案: 六 .( 1) ( 2)485c ( 3) 3 )( 4 ( 4) . (1)336 (2) 22 ( 3) 122 y ( 4) 作业: 课后反思: 组长签字 : 17 月 日 16 2 1 分式的乘除 (三 ) 一、 教学目标: 理解分式乘方的运算法则,熟练地进行分式乘方的运算 . 二、 重点、难点 1重点: 熟练地进行分式乘方的运算 . 2难点: 熟练地进行分式乘、除、乘方的混合运算 . 三、 例、习题的意图分析 1 5 第( 1)题是分式的乘方运算,它与整式的乘方一样应先判 断乘方的结果的符号,在分别把 分子、分母乘方 2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除 . 2教材 5中象第( 1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习 2)题这样的 分式的乘除与乘方的混合运算,也应相应的增加几题为好 . 分式的乘除与乘方的混合运算 是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳 步计算,提高正确率,突破这个难点 . 四、课堂引入 计算下列各题: ( 1) 2)(ba ) (2) 3)(ba ) ( 3) 4)(ba ba ( ) 提问 由以上计算的结果你能推出 ( n 为正整数 ) 的结果吗? 18 五、例题讲解 ( 分析 第( 1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把 分子、分母乘方 2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺 序:先做乘方,再做乘除 . 六、随堂练习 1判断下列各式是否成立,并改正 . ( 1) 23)2( 522) 2)23( 2249 3) 3)32( 33984) 2)3(bx x=2229bx x2计算 (1) 22 )35( ( 2) 332 )23( 3) 32223 )2()3( ( 4) 23322 )()(5) )()()( 422 (6)232 )23()23()2( 七、课后练习 计算 (1) 332 )2(2) 212 )( (3) 4234223 )()()(4) )()()( 2232 八、答案: 六、 1. ( 1)不成立, 23)2( 642)不成立,2)23( = 2249 ( 3)不成立, 3)32( 33278 4)不成立, 19 2)3( bx x = 22 229 x 2. ( 1)24925 ( 2)936827c 3)24398 ( 4)435)21x (6)2234(1) 968(2) 224 ( 3)224)业: 第 6 页到第 8 页 课后反思: 组长签字 : 20 月 日 16 2 2 分式的加减(一) 一、 教学目标: ( 1)熟练地进行同分母的分式加减法的运算 . ( 2)会把异分母的分式通分,转化成同分母的分式相加减 . 二、 重点、难点 1重点: 熟练地进行异分母的分式加减法的运算 . 2难点: 熟练地进行异分母的分式加减法的运算 . 三、例、习题的意图分析 1 题 3 是一个工程问题,题意比较简单,只是用字母 n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为 n+3天,两队共同工作一天完成这项工程的311 引出分式的加减法的实际背景,问题 4 的目的与问题 3 一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算 . 2 察 是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则 . 3 6 计算应用分式的加减法法则 1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号; 第( 2)题是异分母的分式 加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型 的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则 . ( 4) 7 是一道物理的电路题,学生首先要有并联电 21 路总电阻 1, , 比较容易地用含有 式子表示 出50111 11 面的计算就是异分母的分式加法的运算了,得到)50( 5021 11 1 R,再利用倒数的概念得到 R 的结果 是物理的知识若不熟悉,就为数学计算设置了难点 师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例 8 之后讲 . 四、课堂堂引入 18 问题 3、问题 4,教师引导学生列出答案 . 引语: 从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算 . 2下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗? 3. 分式的加减法的实 质与分数的加减法相同,你能说出分式的加减法法则? 4请同学们说出22432 91,3 1,2 1 最简公分母是什么?你能说出最简公分母的确定方法吗? 五、例题讲解 ( 分析 第( 1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第( 2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积 . (补充)例 22 ( 1)2222223223 yx 分析 第( 1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式 . 解:2222223223 =22)32()2()3( yx =2222 yx =)( )(2 =(2)9626131 2 析 第( 2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最 简公分母 ,进行通分,结果要化为最简分式 . 解:9626131 2 3)(3( 6)3(2 131 3)(3(2 12)3)(1()3(2 xx 3)(3(2)96( 2=)3)(3(2)3( 2=62 3 堂练习 计算 23 (1)ba 22 555 23 ( 2)mn 22( 3)9631 2 4)ba 87546563七、课后练习 计算 (1) 222 333 433 65 c b a (2) 2222224323 ab (3) 122 b(4) 22 64346 146 1 xy 八、答案: 四 .( 1)ba 5 25 ( 2)mn 33( 3)31a( 4) 1 五 .(1) 223ba ( 3) 1 ( 4)3 1作业: 第 9 页到第 11 页 课后反思: 组长签字 : 24 月 日 16 2 2 分式的加减(二) 一、 教学目标: 明确分式混合运算的顺序,熟练地进行分式的混合运算 . 二、 重点、难点 1重点: 熟练地进行分式的混合运算 . 2难点 : 熟练地进行分式的混合运算 . 三、例、习题的意图分析 1 8 是分式的混合运算 . 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减 ,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式 . 例 8 只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算 . 2 练习 1:写出第 18页问题 3 和问题 4 的计算结果 解决了本节引言中所列分式的计算,完整地解决了应用问题 . 四、课堂引入 1说出分数混合运算的 顺序 . 2教师指出分数的混合运算与分式的混合运算的顺序相同 . 五、例题讲解 ( 分析 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减 ,最后结果分子、分母要进行约分,注意运算的结果要是最简分式 . (补充)计算 ( 1)x x 4)44 122( 22 25 分析 这道题先做括号里的减法,再把除法转化成乘法,把分母的“ -”号提到分式本身的前边 . 解: x x 4)44 122( 22=)4()2( 1)2( 2 2 x xx x=)4()2( )1()2( )2)(2( 22 x 4()2(4222=4412 2)2224442分析 这道题先做乘除,再做减法,把分子的“ -”号提到分式本身的前边 . 解:2224442=22222224)(2=2222)( =)( )( =六、随堂练习 计算 (1) x 2 2)2 42(2 ( 2) )11()(a ( 3) )2122()41223( 2 后练习 26 1计算 (1) )1)(1(yx y (2) 22242)44 122( a a (3) )111(2计算24)2121( ,并求 出当 a 值 . 八、答案: 六、 ( 1) 2x ( 2) 3) 3 七、 1.(1)22 (2) 21a ( 3) 2. 42 2作业: 第 11 页到第 13 页 课后反思: 组长 签字 27 月 日 16 2 3 整数指数幂 一、 教学目标: 1知道负整数指数幂 = a 0, . 2掌握整数指数幂的运算性质 . 3会用科学计数法表示小于 1 的数 . 二、 重点、难点 1 重点: 掌握整数指数幂的运算性质 . 2难点: 会用科学计数法表示小于 1 的数 . 三、例、习题的意图分析 1 考提出问题,引出本节课的主要内容负整数指数幂的运算性质 . 2 察是为了引出 同底数的幂的 乘法: ,这条性质适用于 m,n 是任意整数的结论 ,说明正整数指数幂的运算性质具有延续性 整数指数幂的运算性质,在整数范围里也都适用 . 3 9 计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的 . 4 10 判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的 运算与整式的运算统一起来 . 5 的数 . 用科学计算法表示小于 1 的数,运用了负整数指数幂的知识 . 用科学计数法不仅可以表示小于 1 的正数,也可以表示一个负数 . 6 考提出问题,让学生思考用负整数指数幂来表示小于 1 的数,从而归纳出:对于一个小于 1 的数,如果小数点后 28 至第一个非 0 数字前有几个 0,用科学计数法表示这个数时, 10的指数就是负几 . 7 1是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识 的数 . 四 、课堂引入 1回忆 正整数指数幂的运算性质: ( 1)同底数的幂的乘法: (m,n 是正整数 ); ( 2)幂的乘方: )( (m,n 是正整数 ); ( 3)积的乘方: )( (n 是正整数 ); ( 4)同底数的幂的除法: ( a 0, m,n 是正整数, m n); ( 5)商的乘方:)(n 是正整数 ); 2 回忆 0 指数幂的 规定,即当 a 0 时, 10 a . 3你还记得 1 纳米 =10 1 纳米 =9101 米吗? 4计算 当 a 0 时, 53 =533321a ,再假设正整数指数幂的运算性质 (a 0, m,n 是正整数, m n)中的 m n 这个条件去掉,那 么 53 = 53a = 2a a =21a ( a 0),就规定负整数指数幂的运算性质:当 n 是正整数时, = a 0) . 五、例题讲解 ( 分析 是应用推广后的整数指数幂的运算性质进行计算,与用正整 数 指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要 29 写成分式形式 . ( 10. 判断下列等式是否正确? 分析 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确 . ( 11. 分析 是一个介绍纳米的应用题,是应用科学计数法表示小于 1 的数 . 六、随堂练习 ( 1) ( 2) (= ( 3) (0= ( 4) 20= ( 5) 2 ( 6) ( (1) ( ( 2) ( (3)(32 ( 七、课后练习 1. 用科学计数法表示下列各数: 0 000 04, 034, 00 45, 0. 003 009 (1) (3 10 (4 103) (2) (2 10 (10 八、答案: 六、 1.( 1) ( 2) 4 ( 3) 1 ( 4) 1( 5) 81( 6)812.( 1)46 ( 2)4 ( 3) 7109七、 1.(1) 4 10(2) 10 ( 3) 10 ( 4)102.( 1) 10 ( 2) 4 103 30 作业: 第 13 页到第 15 页 课后反思: 组长签字 31 月 日 习题 、 教学目标: 复习巩固 分式的乘除、加减法; 复习 巩固分式的四则混合运算;复习 巩固指数运算性质; 复习 巩固科学 记数法 。 二、课时安排: 本习题的内容分讲 四 课时。 第一课时:习题的第 1、 2、 3、 4、 5题。 第二课时:习题的第 6、 7、 8、 9 题。 第三课时:习题的第 10、 11、 12、 13 题。 第四课时:习题的第 14、 15、 16题。 三、每课时的教学目标 : 第一课时: 第 1 题 复习巩固 分子与分母为单项式的 分式的 乘除法 ; 第 2 题复习巩固分子与分母为多项式的分式的乘除法 ; 第 3 题 复习巩固分式的乘、除、乘方混合运算; 第 4 题复习巩固同分母分式的加减法; 第 5 题复习巩固异分母分式的加减法 第二课时 : 第 6 题复习巩固 分式的四则混合运算; 第 7 题复习 巩固指数运算性质 ; 第 8、 9 题 复习 巩固科学记数法。 第三课时 : 第 10、 11、 12、 13 题 都是 带有实际背景的 分式四则问题。 32 这些问题中涉及速度、工作效率、用水量等,正确理解题意是列出算 是的基础。 第 四 课时 : 第 14题的解题思路跟第 11题的解题思路一样; 第 15题的( 1)( 2)题反映了统一规律,即 第 16题涉及立体图形的外面展开图。 作业: 预习 课后反思: 组长签字: 33 月 日 16 3 分式方程 (一 ) 一、 教学目标: 1了解分式方程的概念 , 和产生增根的原因 . 2掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检 验一个数是不是原方程的增根 . 二、 重点、难点 1 重点: 会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的 增根 . 2难点: 会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根 . 三、例、习题的意图分析 1 考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因 . 2 归纳明确地总结了解分式方程的基本思路和做法 . 3 考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及 4 论提出 理论根据是什么? 5 教材 题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化 1 时,要考虑字母系数不为 0,才能除以这个系数 . 这种方程的解必须验根 . 34 四、课堂引入 1回忆一元一次方程的解法,并且解方程 16 324 2 出本章引言的问题: 一艘轮船在静水中的最大航速为 20 千米 /时,它沿江以最大航速顺流航行 100 千米所用时间,与以最大航速逆流航行 60 千米所用时间相等,江水的流速为多少? 分析:设江 水的流速为 v 千米 /时,根据“两次航行所用时间相同”这一等量关系,得到方程 206020100. 像这样分母中含未知数的方程叫做分式方程 . 五、例题讲解 ( 分析 找对最简公分母 x(方程两边同乘 x(把分式方程转化 为整式方程,整式方程的解必须验根 这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便 . ( 分析 找对最简公分母 (x+2), 方程两边同乘(x+2)时 ,学生容易把整数 1 漏 乘最简公分母 (x+2),整式方程的解必须验根 . 六、随堂练习 解方程 (1)623 2)161312 2 3) 11411 2 4) 2212 2 x xx 后练习 35 1解方程 (1) 01 15 2 ) 8 74183 6 (3) 01432 222 ) 4322 511 X 为何值时,代数式31392 的值等于 2? 八、答案: 六、 ( 1) x=18 ( 2)原方程无解 ( 3) x=1 ( 4) x=54七、 1 (1) x=3 (2) x=3 ( 3)原方程无解 ( 4) x=1 2. x=23作业: 第 15 页到第 16 页 课后反思: 组长签字 : 36 月 日 16 3 分式方程 (二 ) 一、 教学目标: 1会分析题意找出等量关系 . 2会列出可化为一元一次方程的分式方程解决实际问题 . 二、 重点、难点 1重点: 利用分式方程组解决实际问题 . 2难点: 列分式方程表示实际问题中的等量关系 . 三、例、习题的意图分析 本节的 3 不同于旧教材的应用题有两点:( 1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻 找未知数,然后根据题意找出问题中的等量关系列方程 要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程( 2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程 . 这道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案 . 教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题 思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题, 37 让学生发挥他们的才能,找到解题的思路,能够独立地完成任务 师就放手让学生做,以提高学生分析问解决问题的能力 . 四、例题讲解 分析:本题是一道工程问题应用题,基本关系是:工作量 =工作效率工作时间 作量虚拟为 1,工作的时间单位为“月” . 等量关系是:甲队单独做的工作量 +两队共同做的工作量 =1 五、随堂练习 1. 学校要举行跳绳比赛,同学们都积极练习 80个所用的时间,乙同学可以跳 240个;又已知甲每分钟比乙少跳5 个,求每人每分钟各跳多少个 . 2. 一项工程要在限期内完成 恰好按规定日期完成 ;如果第二组单独做 ,需要超过规定日期 4 天才能完成 ,如果两组合作 3 天后 ,剩下的工程由第二组单独做 ,正好在规定日期内完成 ,问规定日期是多少天 ? 六、课后练习 1 某学校学生进行急行军训练,预计行 60千米的路程在下午 5 时到达,后来由于把速度加快51,结果于下午 4 时到达,求原计划行军的速度。 2 甲、 乙两个工程队共同完成一项工程,乙队先单独做 1 38 天后,再由两队合作 2 天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的32,求甲、乙两队单独完成各需多少天? 七、答案: 五、 1. 15 个, 20个 2. 12 天 六、 1. 10 千米 /时 2. 4 天, 6 天 作业: 课后反思: 组长签字 : 39 月 日 16 3 分式方程 (三 ) 一、 教学目标: 1会分析题意找出等量关系 . 2会列出可化为一元 一次方程的分式方程解决实际问题 . 二、 重点、难点 1重点: 利用分式方程组解决实际问题 . 2难点: 列分式方程表示实际问题中的等量关系 . 三、例、习题的意图分析 是一道行程问题的应用题也与旧教材的这类题有所不同( 1)本题中涉及到的列车平均提速 v 千米 /时,提速前行驶的路程为 s 千米, 完成 . 用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;( 2)例题中的分析用填空的形式提示学生用已知量 v、 s 和未知数 x,表示提速前列车行驶 s 千米所用的时间,提速后列车的平均速度设为未知数 x 千米 /时 ,以及提速后列车行驶( x+50)千米所用的时间 . 这 道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案 . 教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息安全服务外包合同
- 参展商服务合同协议书
- 线上客服培训
- 露天矿山承包经营合同
- 股权收购合同出资协议
- 护士门诊礼仪培训
- 农田灌溉合同范本
- 包装设计师习题库及答案
- 艾滋病手术患者安全护理
- 肾衰竭护理图解
- 股权委托管理协议(2025年版)
- 2025国家粮食和物资储备局直属和垂直管理系统事业单位招聘统一笔试重点基础提升(共500题)附带答案详解
- 2025年四川省成都市高考英语二诊试卷
- 2025年度海鲜餐厅品牌区域合作授权合同
- 社会行政自考试题及答案
- 2025年保险查勘员笔试试题及答案
- 7.2做中华人文精神的弘扬者教学设计 -2024-2025学年统编版道德与法治七年级下册
- 运维面试试题及答案
- 山东大学教师外其他专业技术岗位招聘真题2024
- 第三单元7.美丽乡村 课件 -2024-2025学年浙人美版(2024)初中美术七年级下册
- 2025年徐州市专业技术人员公需课程 - 知识产权
评论
0/150
提交评论