已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.1 函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解考纲要求:了解构成函数的要素,会求一些简单函数的定义域和值域;在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;了解简单的分段函数,并能简单应用;经典例题:设函数f(x)的定义域为0,1,求下列函数的定义域:(1)H(x)=f(x2+1);(2)G(x)=f(x+m)+f(xm)(m0).当堂练习:1 下列四组函数中,表示同一函数的是( )A B C D2函数的图象与直线交点的个数为( )A必有一个 B1个或2个 C至多一个 D可能2个以上3已知函数,则函数的定义域是( )A B C D4函数的值域是( )A B C D5对某种产品市场产销量情况如图所示,其中:表示产品各年年产量的变化规律;表示产品各年的销售情况下列叙述: ( )(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增你认为较合理的是()A(1),(2),(3) B(1),(3),(4) C(2),(4) D(2),(3)6在对应法则中,若,则 , 6 7函数对任何恒有,已知,则 8规定记号“”表示一种运算,即. 若,则函数的值域是_9已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17则f(x)的解析式是 10函数的值域是 11 求下列函数的定义域 : (1) (2) 12求函数的值域13已知f(x)=x2+4x+3,求f(x)在区间t,t+1上的最小值g(t)和最大值h(t)14在边长为2的正方形ABCD的边上有动点M,从点B开始,沿折线BCDA向A点运动,设M点运动的距离为x,ABM的面积为S(1)求函数S=的解析式、定义域和值域;(2)求ff(3)的值参考答案:经典例题: 解:(1)f(x)的定义域为0,1,f(x2+1)的定义域满足0x2+111x20x=0函数的定义域为0(2)由题意,得得则当1mm,即m时,无解;当1m=m,即m=时,x=m=;当1mm0,即0m时,mx1m综上所述,当0m时,G(x)的定义域为x|mx1m当堂练习:1. A ; 2. C ; 3. C ;4. D ;5. D ; 6. 5, ;7. ;8. ;9. f(x)= -6x2+12x+9; 10.;11.(1) ,(2)由得(- ,-1)(-1,0)12. 设,则,当时,y有最小值,所求函数的值域为.13. 解:因抛物线的对称轴是x= -2,所以分类讨论:(1) 当t+1-2,即t-2时, g(t)=f(t)(2) 当 -2-t(t+1)-(-2), 即t时, h(t)= f(t); 当-2-t (t+1)-(-2), 即t时, h(t)= f(t+1)综上所述:,14. 解:(1)当时,S=x;当时,S=2;当时,S=6-x。 定义域是(0,6),值域是(0,2) (2) ff(3)=f(2)=2 2.1.2 函数的简单性质重难点:领会函数单调性的实质,明确单调性是一个局部概念,并能利用函数单调性的定义证明具体函数的单调性,领会函数最值的实质,明确它是一个整体概念,学会利用函数的单调性求最值;函数奇偶性概念及函数奇偶性的判定;函数奇偶性与单调性的综合应用和抽象函数的奇偶性、单调性的理解和应用;了解映射概念的理解并能区别函数和映射考纲要求:理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义;并了解映射的概念;会运用函数图像理解和研究函数的性质经典例题:定义在区间(,)上的奇函数f(x)为增函数,偶函数g(x)在0, )上图象与f(x)的图象重合.设ab0,给出下列不等式,其中成立的是f(b)f(a)g(a)g(b) f(b)f(a)g(a)g(b) f(a)f(b)g(b)g(a) f(a)f(b)g(b)g(a)A B C D当堂练习: 1已知函数f(x)=2x2-mx+3,当时是增函数,当时是减函数,则f(1)等于 ( )A-3B13 C7 D含有m的变量 2函数是( )A 非奇非偶函数 B既不是奇函数,又不是偶函数奇函数 C 偶函数 D 奇函数3已知函数(1), (2),(3)(4),其中是偶函数的有( )个A1 B2 C3 D4 4奇函数y=f(x)(x0),当x(0,+)时,f(x)=x1,则函数f(x1)的图象为 ( )5已知映射f:AB,其中集合A=-3,-2,-1,1,2,3,4,集合B中的元素都是A中元素在映射f下的象,且对任意的,在B中和它对应的元素是,则集合B中元素的个数是( )A4 B5 C6 D76函数在区间0, 1上的最大值g(t)是7 已知函数f(x)在区间上是减函数,则与的大小关系是 8已知f(x)是定义域为R的偶函数,当x0时, f(x)是增函数,若x10,且,则和的大小关系是 9如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_对称10点(x,y)在映射f作用下的对应点是,若点A在f作用下的对应点是B(2,0),则点A坐标是 13. 已知函数,其中,(1)试判断它的单调性;(2)试求它的最小值14已知函数,常数。(1)设,证明:函数在上单调递增;(2)设且的定义域和值域都是,求的最大值13.(1)设f(x)的定义域为R的函数,求证: 是偶函数;是奇函数.(2)利用上述结论,你能把函数表示成一个偶函数与一个奇函数之和的形式14. 在集合R上的映射:,.(1)试求映射的解析式;(2)分别求函数f1(x)和f2(z)的单调区间;(3) 求函数f(x)的单调区间.参考答案:经典例题: 解析:本题可采用三种解法.方法一:直接根据奇、偶函数的定义由f(x)是奇函数得f(a)=f(a),f(b)=f(b),g(a)=f(a),g(b)=f(b),g(a)=g(a),g(b)=g(b)以上四个不等式分别可简化为f(b)0;f(b)0;f(a)0;f(a)0.又f(x)是奇函数又是增函数,且ab0,故f(a)f(b)f(0)=0,从而以上不等式中、成立.故选C.方法二:结合函数图象由下图,分析得f(a)=g(a)=g(a)=f(a),f(b)=g(b)=g(b)=f(b)从而根据所给结论,得到与是正确的.故选C方法三:利用间接法,即构造满足题意的两个函数模型f(x)=x,g(x)=|x|,取特殊值a、b.如a=2,b=1.可验证正确的是与,故选C答案:C当堂练习:B ; 2. D ; 3. B ;4. D ;5. A ; 6. ;7. ;8. ;9. x=-1; 10. ();11. 解: (1)函数,设时, ,所以在区间上单调递增;(2)从而当x=1时,有最小值12. 解:(1)任取,且, 因为,所以,即,故在上单调递增(2)因为在上单调递增,的定义域、值域都是,即是方程的两个不等的正根有两个不等的正根所以,时,取最大值13.解: (1)利用定义易证之; (2)由(1)得= 14. 解: (1); (2)当时, f1(x)单调递减, 当时, f1(x)单调递增; 当时, f2(z) 单调递减, 当时, f1(x)单调递增(3) 当和时, f(x)分别单调递减;当和分别单调递增2.1.3单元测试1 设集合P=,Q=,由以下列对应f中不能构成A到B的映射的是 ( )A B C D 2下列四个函数: (1)y=x+1; (2)y=x+1; (3)y=x2-1; (4)y=,其中定义域与值域相同的是( ) A(1)(2) B(1)(2)(3) C2)(3) D(2)(3)(4)3已知函数,若,则的值为( )A10 B -10 C-14 D无法确定4设函数,则的值为( )Aa Bb Ca、b中较小的数 Da、b中较大的数5已知矩形的周长为1,它的面积S与矩形的长x之间的函数关系中,定义域为( )A B C D 6已知函数y=x2-2x+3在0,a(a0)上最大值是3,最小值是2,则实数a的取值范围是( )A0a1 B0f(-1) Bf(-1)f(-2) Cf(1)f(2) Df(-2)f(2)6计算. 7设,求8已知是奇函数,则= 9函数的图象恒过定点 10若函数的图象不经过第二象限,则满足的条件是 11先化简,再求值: (1),其中;(2) ,其中 12(1)已知x-3,2,求f(x)=的最小值与最大值(2)已知函数在0,2上有最大值8,求正数a的值(3)已知函数在区间-1,1上的最大值是14,求a的值13求下列函数的单调区间及值域:(1) ; (2);(3)求函数的递增区间14已知(1)证明函数f(x)在上为增函数;(2)证明方程没有负数解参考答案:经典例题:解:由题意可知,函数y=3的定义域为实数R设u=x2+2x+3(xR),则f(u)=3u,故原函数由u=x2+2x+3与f(u)=3u复合而成f(u)=3u在R上是增函数,而u=x2+2x+3=(x1)2+4在x(,1)上是增函数,在1,+上是减函数y=f(x)在x(,1)上是增函数,在1,+上是减函数又知u4,此时x=1,当x=1时,ymax=f(1)=81,而30,函数y=f(x)的值域为(0,81)当堂练习:1.A ; 2. C ; 3. B ;4. A ;5. A ; 6. ;7. ;8. ;9. (1,0);10. ; 11.(1) 原式=(2)原式=12. (1)解:f(x)=, x-3,2, 则当2-x=,即x=1时,f(x)有最小值;当2-x=8,即x=-3时,f(x)有最大值57 (2)解:设,当0,2时,当0a1时,.综上所述,a=2 (3)原函数化为,当a1时,因,得,从而,同理, 当0a1时,f(x) 在上单调递减;当0a1时,f(x) 在上单调递增14.(1)由y=x21(x1),得y0,且x=,f1(x)= (x0),即C2:g(x)= ,M=x|x0 (2)对任意的x1,x2M,且x1x2,则有x1x20,x10,x20|g(x1)g(x2)|=|=|x1x2|y=g(x)为利普希茨类函数,其中a=2.4幂函数重难点:掌握常见幂函数的概念、图象和性质,能利用幂函数的单调性比较两个幂值的大小考纲要求:了解幂函数的概念;结合函数的图像,了解他们的变化情况经典例题:比较下列各组数的大小:(1)1.5,1.7,1;(2)(),(),1.1;(3)3.8,3.9,(1.8);(4)31.4,51.5.当堂练习:1函数y(x22x)的定义域是()Ax|x0或x2B(,0)(2,)C(,0)2,)D(0,2)3函数y的单调递减区间为()A(,1)B(,0)C0,D(,)3如图,曲线c1, c2分别是函数yxm和yxn在第一象限的图象,那么一定有()Anm0 Bmnn0 Dnm04下列命题中正确的是( )A当时,函数的图象是一条直线 B幂函数的图象都经过(0,0),(1,1)两点 C幂函数的 图象不可能在第四象限内D若幂函数为奇函数,则在定义域内是增函数5下列命题正确的是( )幂函数中不存在既不是奇函数又不是偶函数的函数图象不经过(1,1)为点的幂函数一定不是偶函数 如果两个幂函数的图象具有三个公共点,那么这两个幂函数相同 如果一个幂函数有反函数,那么一定是奇函数6用“”连结下列各式: , 7函数y在第二象限内单调递增,则m的最大负整数是_ _8幂函数的图象过点(2,), 则它的单调递增区间是 9设x(0, 1),幂函数y的图象在yx的上方,则a的取值范围是 10函数y在区间上 是减函数11试比较的大小12讨论函数yx的定义域、值域、奇偶性、单调性。13一个幂函数yf (x)的图象过点(3, ),另一个幂函数yg(x)的图象过点(8, 2), (1)求这两个幂函数的解析式; (2)判断这两个函数的奇偶性; (3)作出这两个函数的图象,观察得f (x)0的解集是( )A (-1,3) B-1,3 C D 2已知f(x)=1-(x-a)(x-b),并且m,n是方程f(x)=0的两根,则实数a,b,m,n的大小关系可能是( )A mabn Bamnb Cambn Dmanb3对于任意k1,1,函数f(x)=x2+(k4)x2k+4的值恒大于零,则x的取值范围是Ax4 Cx3 Dx14 设方程2x+2x=10的根为,则( )A(0,1) B(1,2) C(2,3) D(3,4)5如果把函数y=f(x)在x=a及x=b之间的一段图象近似的看作直线的一段,设acb,那么f(c)的近似值可表示为( )ABC.f(a)+D.f(a)6关于x的一元二次方程x2+2(m+3)x+2m+14=0有两个不同的实根,且一根大于3,一根小于1,则m的取值范围是 7 当a 时,关于x的一元二次方程 x2+4x+2a-12=0两个根在区间-3,0中8若关于x的方程4x+a2x+4=0有实数解,则实数a的取值范围是_ 9设x1,x2 分别是log2x=4-x 和2x+x=4的实根,则x1+x2= 10已知,在下列说法中: (1)若f(m)f(n)0,且mn,则方程f(x)=0在区间(m,n)内有且只有一根; (2) 若f(m)f(n)0,且m0,且m0,且mn,则方程f(x)=0在区间(m,n)内至多有一根; 其中正确的命题题号是 11关于x的方程mx2+2(m+3)x+2m+14=0有两个不同的实根,且一个大于4,另一个小于4,求m的取值范围12已知二次函数f(x)=a(a+1)x2-(2a+1)x+1,(1)求函数f(x)的图象与x轴相交所截得的弦长;(2)若a依次取1,2,3,4,-,n,时, 函数f(x)的图象与x轴相交所截得n条弦长分别为求的值13 已知二次函数且满足(1)证明:函数的图象交于不同的两点A,B;(2)若函数上的最小值为9,最大值为21,试求的值;(3)求线段AB在轴上的射影A1B1的长的取值范围14讨论关于x的方程lg(x-1)+lg(3-x)=lg(a-x)的实根个数参考答案:经典例题:解:设y=|x22x3|和y=a,利用Excel、图形计算器或其他画图软件,分别作出这两个函数的图象,它们的交点的个数,即为所给方程实根的个数如下图,当a=0或a4时,有两个实根;当a=4时,有三个实根;当0a4时,有四个实根当堂练习:1.C ; 2. A ; 3. C ;4. C ;5. C ; 6.; 7.; 8.a4; 9. 4; 10. (2);11.设f(x)= mx2+2(m+3)x+2m+14,根据图象知当或时,符合题意从而得. 12. (1)设抛物线与x轴相交于点(x1,0),(x2,0),则,得;(2) =13.(1)由,即函数的图象交于不同两点A,B;(2)知函数F(x)在2,3上为增函数, (3)设方程 设的对称轴为上是减函数 14.解:原方程转化为,即方程x2-5x+a+3=0在区间(1,3)内是否有根,由得:,设f(x)= x2-5x+a+3,对称轴是,若得有一根在区间(1,3)内,即当时,原方程有一根; 若得时,原方程有两根; 时, 原方程无解2.6函数模型及其应用重难点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同类型的函数增长的含义考纲要求:了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用经典例题:1995年我国人口总数是12亿.如果人口的自然年增长率控制在1.25%,问哪一年我国人口总数将超过14亿当堂练习:1某物体一天中的温度T是时间t的函数: T(t)=t3-3t+60,时间单位是小时,温度单位是,当t=0表示中午12:00,其后t值取为正,则上午8时的温度是( )A8 B112 C58 D182.某商店卖A、B两种价格不同的商品,由于商品A连续两次提价20%,同时商品B连续两次降价20%,结果都以每件23.04元售出,若商店同时售出这两种商品各一件,则与价格不升、不降的情况相比较,商店盈利的情况是:( )A多赚5.92元 B少赚5.92元 C多赚28.92元 D盈利相同3某厂生产中所需一些配件可以外购,也可以自己生产,如外购,每个价格是1.10元;如果自己生产,则每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,则决定此配件外购或自产的转折点是( )件(即生产多少件以上自产合算)A1000 B1200 C1400 D16004在一次数学实验中, 运用图形计算器采集到如下一组数据x-2.0-1.001.002.003.00y0.240.5112.023.988.02则x,y的函数关系与下列哪类函数最接近?(其中a,b为待定系数) ( )Ay=a+bX By=a+bx Cy=a+logbx Dy=a+b/x 5某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20x0.1x2(0x10),则此时第一次服进的药已吸收完,此时血液中含药量应为第二、三次的和,解得t3=13.5小时,故第四次服药应在20:3012.设每日来回y次,每次挂x节车厢,由题意,y=kx+b,且当x=4时,y=16;当x=7时,y=10.解得:k=2,b=24,y=2x+24. 由题意,每次挂车厢最多时,营运人数最多,设每日拖挂W节车厢,则W=2xy=2x(2x+24)=4x2+48x=4(x6)2+144,当x=6时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广东客运从业资格证考试考什么
- 2024年甘肃客运从业资格证考试答题技巧与方法
- 管理会计实务 习题答案 情境六 答案
- 作文石头话题
- 2022年制冷与空调设备安装修理作业考试题第143套
- 混合动力汽车发动机构造与维修 教案 项目二任务1教案(参考)
- 疼痛管理诊所医师聘用合同
- 城市地铁装修施工合同范本
- 网络公司保洁车辆管理细则
- 深圳二手房互换合同模板
- 食品智能化加工技术
- 2022年版 义务教育《数学》课程标准
- 广东广州市白云区人民政府棠景街道办事处招考聘用政府雇员笔试题库含答案解析
- 煤矿采掘大数据分析与应用
- 2024重度哮喘诊断与处理中国专家共识解读课件
- 种植土回填施工方案
- 司机考试试题(含答案)
- 老年专科护理考试试题
- 2024年浙江杭州钱塘新区城市发展集团限公司招聘30人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 成人住院患者静脉血栓栓塞症Caprini、Padua风险评估量表
- 股骨粗隆间骨折
评论
0/150
提交评论