已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲函数的奇偶性与周期性【2013年高考会这样考】1判断函数的奇偶性2利用函数奇偶性、周期性求函数值及求参数值3考查函数的单调性与奇偶性的综合应用【复习指导】本讲复习时应结合具体实例和函数的图象,理解函数的奇偶性、周期性的概念,明确它们在研究函数中的作用和功能重点解决综合利用函数的性质解决有关问题基础梳理1奇、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做奇函数奇函数的图象关于原点对称;偶函数的图象关于y轴对称2奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(2)在公共定义域内两个奇函数的和是奇函数,两个奇函数的积是偶函数;两个偶函数的和、积都是偶函数;一个奇函数,一个偶函数的积是奇函数3周期性(1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT)f(x),那么就称函数yf(x)为周期函数,称T为这个函数的周期(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期一条规律奇、偶函数的定义域关于原点对称函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件两个性质(1)若奇函数f(x)在x0处有定义,则f(0)0.(2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇奇奇,奇奇偶,偶偶偶,偶偶偶,奇偶奇三种方法判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法三条结论(1)若对于R上的任意的x都有f(2ax)f(x)或f(x)f(2ax),则yf(x)的图象关于直线xa对称(2)若对于R上的任意x都有f(2ax)f(x),且f(2bx)f(x)(其中ab),则:yf(x)是以2(ba)为周期的周期函数(3)若f(xa)f(x)或f(xa)或f(xa),那么函数f(x)是周期函数,其中一个周期为T2a;(3)若f(xa)f(xb)(ab),那么函数f(x)是周期函数,其中一个周期为T2|ab|.双基自测1(2011全国)设f(x)是周期为2的奇函数,当0x1时,f(x)2x(1x),则f()A. B. C. D.解析因为f(x)是周期为2的奇函数,所以fff.故选A.答案A2(2012福州一中月考)f(x)x的图象关于()Ay轴对称 B直线yx对称C坐标原点对称 D直线yx对称解析f(x)的定义域为(,0)(0,),又f(x)(x)f(x),则f(x)为奇函数,图象关于原点对称答案C3(2011广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()Af(x)|g(x)|是偶函数 Bf(x)|g(x)|是奇函数C|f(x)|g(x)是偶函数 D|f(x)|g(x)是奇函数解析由题意知f(x)与|g(x)|均为偶函数,A项:偶偶偶;B项:偶偶偶,B错;C项与D项:分别为偶奇偶,偶奇奇均不恒成立,故选A.答案A4(2011福建)对于函数f(x)asin xbxc(其中,a,bR,cZ),选取a,b,c的一组值计算f(1)和f(1),所得出的正确结果一定不可能是()A4和6 B3和1C2和4 D1和2解析f(1)asin 1bc,f(1)asin 1bc且cZ,f(1)f(1)2c是偶数,只有D项中两数和为奇数,故不可能是D.答案D5(2011浙江)若函数f(x)x2|xa|为偶函数,则实数a_.解析法一f(x)f(x)对于xR恒成立,|xa|xa|对于xR恒成立,两边平方整理得ax0对于xR恒成立,故a0.法二由f(1)f(1),得|a1|a1|,得a0.答案0考向一判断函数的奇偶性【例1】下列函数:f(x) ;f(x)x3x;f(x)ln(x);f(x);f(x)lg.其中奇函数的个数是()A2 B3 C4 D5审题视点 利用函数奇偶性的定义判断解析f(x)的定义域为1,1,又f(x)f(x)0,则f(x)是奇函数,也是偶函数;f(x)x3x的定义域为R,又f(x)(x)3(x)(x3x)f(x),则f(x)x3x是奇函数;由xx|x|0知f(x)ln(x)的定义域为R,又f(x)ln(x)lnln(x)f(x),则f(x)为奇函数;f(x)的定义域为R,又f(x)f(x),则f(x)为奇函数;由0得1x1,f(x)ln的定义域为(1,1),又f(x)lnln1lnf(x),则f(x)为奇函数答案D 判断函数的奇偶性的一般方法是:(1)求函数的定义域;(2)证明f(x)f(x)或f(x)f(x)成立;或者通过举反例证明以上两式不成立如果二者皆未做到是不能下任何结论的,切忌主观臆断【训练1】 判断下列函数的奇偶性:(1)f(x);(2)f(x)x2|xa|2.解(1)解不等式组得2x0,或0x2,因此函数f(x)的定义域是2,0)(0,2,则f(x).f(x)f(x),所以f(x)是奇函数(2)f(x)的定义域是(,)当a0时,f(x)x2|x|2,f(x)x2|x|2x2|x|2f(x)因此f(x)是偶函数;当a0时,f(a)a22,f(a)a2|2a|2,f(a)f(a),且f(a)f(a)因此f(x)既不是偶函数也不是奇函数考向二函数奇偶性的应用【例2】已知f(x)x(x0)(1)判断f(x)的奇偶性;(2)证明:f(x)0.审题视点 (1)用定义判断或用特值法否定;(2)由奇偶性知只须求对称区间上的函数值大于0.(1)解法一f(x)的定义域是(,0)(0,)f(x)x.f(x)f(x)故f(x)是偶函数法二f(x)的定义域是(,0)(0,),f(1),f(1),f(x)不是奇函数f(x)f(x)xxxxx(11)0,f(x)f(x),f(x)是偶函数(2)证明当x0时,2x1,2x10,所以f(x)x0.当x0时,x0,所以f(x)0,又f(x)是偶函数,f(x)f(x),所以f(x)0.综上,均有f(x)0. 根据函数的奇偶性,讨论函数的单调区间是常用的方法奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反所以对具有奇偶性的函数的单调性的研究,只需研究对称区间上的单调性即可【训练2】 已知奇函数f(x)的定义域为2,2,且在区间2,0内递减,求满足:f(1m)f(1m2)0的实数m的取值范围解f(x)的定义域为2,2,有解得1m.又f(x)为奇函数,且在2,0上递减,在2,2上递减,f(1m)f(1m2)f(m21)1mm21,即2m1.综合可知,1m1.考向三函数的奇偶性与周期性【例3】已知函数f(x)是(,)上的奇函数,且f(x)的图象关于x1对称,当x0,1时,f(x)2x1,(1)求证:f(x)是周期函数;(2)当x1,2时,求f(x)的解析式;(3)计算f(0)f(1)f(2)f(2013)的值审题视点 (1)只需证明f(xT)f(x),即可说明f(x)为周期函数;(2)由f(x)在0,1上的解析式及f(x)图象关于x1对称求得f(x)在1,2上的解析式;(3)由周期性求和的值(1)证明函数f(x)为奇函数,则f(x)f(x),函数f(x)的图象关于x1对称,则f(2x)f(x)f(x),所以f(4x)f(2x)2f(2x)f(x),所以f(x)是以4为周期的周期函数(2)解当x1,2时,2x0,1,又f(x)的图象关于x1对称,则f(x)f(2x)22x1,x1,2(3)解f(0)0,f(1)1,f(2)0,f(3)f(1)f(1)1又f(x)是以4为周期的周期函数f(0)f(1)f(2)f(2013)f(2 012)f(2 013)f(0)f(1)1. 判断函数的周期只需证明f(xT)f(x)(T0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题【训练3】 已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)f(x1),则f(2 013)f(2 015)的值为()A1 B1 C0 D无法计算解析由题意,得g(x)f(x1),又f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,g(x)g(x),f(x)f(x),f(x1)f(x1),f(x)f(x2),f(x)f(x4),f(x)的周期为4,f(2 013)f(1),f(2 015)f(3)f(1),又f(1)f(1)g(0)0,f(2 013)f(2 015)0.答案C规范解答3如何解决奇偶性、单调性、周期性的交汇问题【问题研究】 函数的奇偶性、单调性、周期性是函数的三大性质,它们之间既有区别又有联系,高考作为考查学生综合能力的选拔性考试,在命题时,常常将它们综合在一起命制试题.【解决方案】 根据奇偶性的定义知,函数的奇偶性主要体现为f(x)与f(x)的相等或相反关系,而根据周期函数的定义知,函数的周期性主要体现为f(xT)与f(x)的关系,它们都与f(x)有关,因此,在一些题目中,函数的周期性常常通过函数的奇偶性得到.函数的奇偶性体现的是一种对称关系,而函数的单调性体现的是函数值随自变量变化而变化的规律,因此,在解题时,往往需借助函数的奇偶性或周期性来确定函数在另一区间上的单调性,即实现区间的转换,再利用单调性来解决相关问题.【示例】(本题满分12分)(2011沈阳模拟)设f(x)是(,)上的奇函数,f(x2)f(x),当0x1时,f(x)x.(1)求f()的值;(2)当4x4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(,)内函数f(x)的单调增(或减)区间 第(1)问先求函数f(x)的周期,再求f();第(2)问,推断函数yf(x)的图象关于直线x1对称,再结合周期画出图象,由图象易求面积;第(3)问,由图象观察写出解答示范 (1)由f(x2)f(x)得,f(x4)f(x2)2f(x2)f(x),所以f(x)是以4为周期的周期函数,(2分)f()f(14)f(4)f(4)(4)4.(4分)(2)由f(x)是奇函数与f(x2)f(x),得:f(x1)2f(x1)f(x1),即f(1x)f(1x)故知函数yf(x)的图象关于直线x1对称(6分)又0x1时,f(x)x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示(8分)当4x4时,f(x)的图象与x轴围成的图形面积为S,则S4SOAB44.(10分)(3)函数f(x)的单调递增区间为4k1,4k1(kZ),单调递减区间4k1,4k3(kZ)(12分) 关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题【试一试】 已知定义在R上的奇函数f(x)满足f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海南省建筑安全员《C证》考试题库
- 2025四川省建筑安全员《A证》考试题库
- 民航英语口语总复习课件
- 【大学课件】官方单据公务证书
- 专利申请实务
- 最小公倍数 比较课件
- 小古文-大禹治水课件
- 《展览品牌策划》课件
- 2025年中国男裤行业市场前景预测及投资战略研究报告
- 《慢性阻塞性肺疾患》课件
- 汽车租赁流程图
- “以案促改”心得体会
- 2025届高考语文复习:散文的结构与行文思路 课件
- 审计工作述职报告
- 安全事故现场处置方案(3篇)
- 广东省广州海珠区2023-2024学年八年级上学期期末物理试卷(含答案)
- 中国通 用技术集团招聘笔试题库
- 【MOOC】工程材料学-华中科技大学 中国大学慕课MOOC答案
- 就业招聘服务行业市场前瞻与未来投资战略分析报告
- 收购居间服务合同
- 银行贷款保证合同范本
评论
0/150
提交评论