免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.5.导函数不等式1. 已知函数()若,试确定函数的单调区间;()若,且对于任意,恒成立,试确定实数的取值范围;()设函数,求证:分析:本小题主要考查函数的单调性、极值、导数、不等式等基本知识,考查运用导数研究函数性质的方法,考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力。解:()由得,所以由得,故的单调递增区间是,由得,故的单调递减区间是()由可知是偶函数于是对任意成立等价于对任意成立由得当时,此时在上单调递增故,符合题意当时,当变化时的变化情况如下表:单调递减极小值单调递增由此可得,在上,依题意,又综合,得,实数的取值范围是(), 由此得,故2. 设,对任意实数,记()求函数的单调区间;()求证:()当时,对任意正实数成立;()有且仅有一个正实数,使得对于任意正实数成立。分析:本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力分类讨论、化归(转化)思想方法(I)解:由,得因为当时,当时,当时,故所求函数的单调递增区间是,单调递减区间是(II)证明:(i)方法一:令,则,当时,由,得,当时,所以在内的最小值是故当时,对任意正实数成立方法二:对任意固定的,令,则,由,得当时,;当时,所以当时,取得最大值因此当时,对任意正实数成立(ii)方法一:由(i)得,对任意正实数成立即存在正实数,使得对任意正实数成立下面证明的唯一性:当,时,由(i)得,再取,得,所以,即时,不满足对任意都成立故有且仅有一个正实数,使得对任意正实数成立方法二:对任意,因为关于的最大值是,所以要使对任意正实数成立的充分必要条件是:,即,又因为,不等式成立的充分必要条件是,所以有且仅有一个正实数,使得对任意正实数成立3. 定义函数f n( x )(1x)n1, x2,nN*(1)求证:f n ( x ) nx;(2)是否存在区间 a,0 (a0),使函数h( x )f 3( x )f 2( x )在区间a,0上的值域为ka,0?若存在,求出最小实数k的值及相应的区间a,0,若不存在,说明理由.分析:本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力分类讨论、数形结合思想方法解:(1)证明:f n( x )nx(1x)n1nx,令g( x )(1x)n1nx , 则g( x )n(1x)n11.当x(2,0)时, g( x )0,当x(0,)时,g( x )0,g( x )在x0处取得极小值g( 0 )0,同时g( x )是单峰函数,则g( 0 )也是最小值.g( x )0,即f n ( x )nx(当且仅当x0时取等号). 注:亦可用数学归纳法证明.(2)h( x )f 3( x )f 2( x )x( 1x )2h( x )(1x)2x2(1x)(1x)(13x)令h(x)0, 得x1或x ,当x(2,1),h(x)0;当x(1,)时,h(x)0;当x( ,)时,h(x)0.故作出h(x)的草图如图所示,讨论如下:当时,h(x)最小值h(a)ka k(1a)2当时h(x)最小值h(a)h()ka 当时h( x )最小值h( a )a(1a)2ka k(1a)2,时取等号.综上讨论可知k的最小值为,此时a,0,0.例4. 已知在区间上是增函数。(1)求实数的值组成的集合A;(2)设关于的方程的两个非零实根为、。试问:是否,使得不等式对及恒成立?若存在,求的取值范围;若不存在,请说明理由。分析:本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力函数方程思想、化归(转化)思想方法解:(1) 在上 对恒成立即,恒有成立设 (2) 、是方程的两不等实根,且, 对及恒成立 对恒成立设, 对恒成立 满足题意5. 已知函数。(1)求函数的反函数和的导函数;(2)假设对,不等式成立,求实数的取值范围。分析:本题主要考查反函数的概念及基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力化归(转化)思想方法解:(1) (2) ,成立 设, 恒有成立 , ,在上 即 在上 的取值范围是6.设函数.()当x=6时,求的展开式中二项式系数最大的项;()对任意的实数x,证明()是否存在,使得a恒成立?若存在,试证明你的结论并求出a的值;若不存在,请说明理由.()解:展开式中二项式系数最大的项是第4项,这项是()证法一:因证法二:因而故只需对和进行比较。令,有,由,得因为当时,单调递减;当时,单调递增,所以在处有极小值故当时,从而有,亦即故有恒成立。所以,原不等式成立。()对,且有又因,故,从而有成立,即存在,使得恒成立。欢迎您的光临,word文档下载后可以修改编辑。双击可以删除页眉
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训工作季度汇报模板
- 培训课件散文优美段落
- “安全生产月”活动总结(32篇)
- 隐患排查整改报告(29篇)
- 合同说明函的格式
- 四下五单元作文教育课件
- 休息室服务培训课件
- 如何管理学生教育课件
- 《创业有方》课件
- 《广告的社会功能》课件
- 《养成良好的学习习惯》主题班会教学反思3篇
- 山东师范大学《计算机基础》期末考试复习题及参考答案
- 2023年内蒙古自治区乡村医生招聘笔试模拟试题及答案解析
- 刑事诉讼法智慧树知到答案章节测试2023年山东建筑大学
- 新能源汽车概论试题库及答案
- GB/T 17468-2008电力变压器选用导则
- GB/T 12628-2008硬磁盘驱动器通用规范
- GA/T 1073-2013生物样品血液、尿液中乙醇、甲醇、正丙醇、乙醛、丙酮、异丙醇和正丁醇的顶空-气相色谱检验方法
- 初级电焊工培训课件
- 广州旅游介绍英文版课件
- 井下修井作业技术课件
评论
0/150
提交评论