以超音波水浴结合酸萃取进行土壤重金属移除.doc_第1页
以超音波水浴结合酸萃取进行土壤重金属移除.doc_第2页
以超音波水浴结合酸萃取进行土壤重金属移除.doc_第3页
以超音波水浴结合酸萃取进行土壤重金属移除.doc_第4页
以超音波水浴结合酸萃取进行土壤重金属移除.doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

研究生:呂毅平研究生(外文):Yi-Ping Lui論文名稱:以超音波水浴結合酸萃取進行土壤重金屬移除論文名稱(外文):Ultrasonic-Bath-Assisted Acid Extraction in Heavy Metals Contaminated Soils指導教授:薩支高土壤清洗是利用萃取劑在土壤顆粒表面進行反應,若以超音波水浴振動取代傳統往覆式振盪或攪拌等物理處理過程,應可提高萃取效率。本研究目的為探討超音波水浴結合土壤酸萃取來處理污染土壤之可行性,並找出較佳的超音波水浴操作條件。過程針對不同供試土壤(人工配製及現地污染土壤)進行超音波水浴酸洗處理,分析超音波水浴酸洗處理之重金屬去除效率,並以序列萃取來觀察重金屬型態分佈改變之現象。本研究首先比較傳統與超音波振動酸萃取,確認超音波水浴之可行性,發現超音波水浴酸萃取可在短時間內就達與傳統萃取相同之重金屬去除效果。經由超音波振動結合水浴加熱處理後,除了鎘之外對其他重金屬去除效果都呈現協力作用。以較佳超音波水浴酸萃取操作條件(萃取劑為1.0 N鹽酸;時間為60分鐘;頻率為25 kHz;功率為200 W;水浴溫度為80)處理供試土壤,土壤中鎘、鉻、銅、鎳、鉛及鋅重金屬去除率分別為:64-99、24-59、74-97、25-100、64-100及43-91%。超音波水浴酸萃取之重金屬去除效率,與供試土樣之重金屬型態分佈有關係。供試土樣經超音波水浴酸萃取後,不同重金屬之各種型態會呈現不同分佈,並發現生物不可利用型態(有機態、鐵錳氧化態及殘餘態)之重金屬會互相轉換到生物可利用型態(水溶態、交換態及碳酸鹽態)。不同重金屬的較佳萃取時間依序為:鎘銅、鉛、鋅鉻、鎳。超音波水浴酸萃取在常溫時短時間即對於供試土壤中鎘之萃取效率非常顯著,使用水浴加熱來增加超音波振動對鉻及鎳之萃取效率是必要的。由超音波水浴酸萃取後重金屬型態改變之情形發現,處理對於生物可利用型態及鐵錳態之去除率相當顯著,而對殘餘態之低去除率則可藉由改變固液比、試劑濃度、時間及萃取次數改善。超音波水浴萃取證實為可提供快速、簡單、可靠且有效去除現地污染土中重金屬的技術之一。Generally, soil washing technology can be used to extract contaminants from soil particle surface. Using ultrasonic-bath-assisted acid extraction (UBAE) to replace traditional mechanical shaking may improve the removal efficiency of acid extraction. The objective of this study is to investigate the feasibility and optimization of UBAE on heavy metal contaminated soils. Sequential extraction procedures (SEP) were also used to observe the variation of soil heavy metals before and after UBAE.UBAE was confirmed to have high removal efficiency for heavy metals in the beginning of the study. Except Cd, the combination of ultrasonic vibration and bath heating became synergism to other 5 heavy metals. Removal efficiency of Cd, Cr, Cu, Ni, Pb and Zn in either contaminated or spiked soils under selected conditions (1.0 N HCl; 60 min;25 kHz frequency; 200 W power; as well as 80 bath temperature) were 64-99%, 24-59%, 74-97%, 25-100%, 64-100% and 43-91% respectively.From the SEP results, the removal efficiency were related to the forms of heavy metals in soils. The bioavailable (water soluble, exchangeable and carbonate) forms and non-bioavailable (organic, Fe-Mn oxide and residual) forms were found to be transferred after UBAE treatment. The time need for better efficiency using UBAE were as follow: CrCu, Pb, Zn, NiCd. For Cd in soil, the efficiency of UBAE is significant at room temperature in a short time. Combination of temperature and ultrasonic treatments were need to increase the acid extraction efficiency for Cr and Ni in soils.After UBAE, the bioavailable and Fe-Mn oxide forms of heavy metals in soils can be significantly removed. Adequate soil-liquid ratio, acid concentration as well as extraction time can improve the removal of residual heavy metals. UBAE was proved to be one of the rapid, easy applied, reliable and effective remediation technology for heavy metal contaminated soils.土壤及地下水污染整治網 (2010),98年6月28日取自.tw/public/。台灣產業服務基金會網 (2010),98年6月28日取自.tw/。行政院環境保護署 (2010),98年6月28日取自.tw/。行政院環境保護署環境檢驗所 (2010) 土壤檢測方法,土壤中酸鹼值測定方法 (NIEA S410.61C)、土壤中陽離子交換容量醋酸鈉法 (NIEA S202.60A)、王水消化法 (NIEA S321.63B)、超音波萃取法 (NIEA M167.00C),99年6月28日取自http:/www.niea. gov.tw。宏濬儀器有限公司 (2010) ,98年6月28日取自.tw/index.htm。周昱銘 (2007) 濕篩分離技術用於現地受重金屬污染土壤之可行性與健康風險評估,國立屏東科技大學環境工程與科學系碩士論文,第3-59頁。林獻山、張添晉 (2006) 土壤污染與整治復育,高立圖書有限公司,第205-323頁。范千靖 (2005) 以植生萃取法復育重金屬污染土壤之成效評估,國立屏東科技大學環境工程與科學系碩士論文,第4-48頁。孫婉榕 (2004) 含鎳之土壤及吸附劑熱安定化機制研究,東海大學環境工程與科學研究所碩士論文,第2-5頁。莊佩祺 (2003) 土壤重金屬污染化合物型態分布之影響因子探討,逢甲大學環境工程與科學研究所碩士論文,第57-73頁。黃舒瑜 (2003) 土壤重金屬0.1 N HCl 萃取量與全量濃度之相關性研究,逢甲大學環境工程與科學研究所碩士論文,第16-50頁。黃慧秦 (2003) 含鎳之土壤及吸附劑熱安定化機制研究,東海大學環境工程與科學研究所碩士論文,第2-3頁。郭魁士 (1980) 土壤實驗,中國書局,第9-15頁、第137-140頁。郭魁士 (1992) 土壤學,中國圖書,第182-186,210-214,269-282頁。張怡頻 (2005) 以環境友善材料復育受鎘和鉛污染之土壤,國立屏東科技大學環境工程與科學系碩士論文,第4-5頁。張俊鴻 (2006) 以EDTA、藻酸鈉對砷及鉻污染土壤萃取效率之研究,國立中央大學環境工程研究所碩士論文,第5-71頁。溫一倉 (1999) 以化學萃取配合物裡連續沉澱法復育受鎘、銅及 鉛污染土壤之研究,國立屏東科技大學環境工程與科學系碩士論文,第59-62頁。蔡在唐 (2003) 以電動力法復育受油品污染土壤,國立屏東科技大學環境工程與科學系碩士論文,第118-119頁。劉仁煜 (2007) 土壤徑篩分對污染土壤重屬移除效之影響,朝陽科技大學碩士論文,第22-32頁。歐育憲 (2000) 土壤中重金屬污染物之生物有效性意義研究,逢甲大學環境工程與科學研究所碩士論文,第4-31頁。鄭振東 (1999) 超音波工程,全華科技圖書股份有限公司,第1.1-1.17頁。顏士欽 (2005) 評估以酸洗及化學萃取法去除土壤中重金屬之可行性及地力影響,國立屏東科技大學環境工程與科學系碩士論文,第33-89頁。蘇茂生 (2002) 不明廢棄物場址以現地玻璃化法整治之效能研究,國立屏東科技大學環境工程與科學系碩士論文,第28-31頁。Akkajit, P., Tongcumpou, C., 2010. Fractionation of metals in cadmium contaminated soil: Relation and effect on bioavailable cadmium. Geoderma 156, pp. 126132.Al-Merey, R., Al-Masri, M. S., Bozou, R., 2002. Cold ultrasonic acid extraction of copper, lead and zinc from soil samples. Analytica Chimica Acta 452, pp. 143148.Arain, M. B., Kazi, T. G., Jamali, M. K., Baig, J. A., Afridi, H. I., Jalbani, N., Sarfraz, R. A., 2009. Comparison of Different Extraction Approaches for Heavy Metal Partitioning in Sediment Samples. Pedosphere 19(4): pp. 476485.Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., Baig, J. A., 2008. Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: A comparison with modified sequential extraction procedure. Journal of Hazardous Materials 154, pp. 9981006.Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., Kandhro, G. A., Ansari, R., Sarfraz, R. A., 2008. Hazardous impact of toxic metals on tobacco leaves grown in contaminated soil by ultrasonic assisted pseudo-digestion: Multivariate study. Journal of Hazardous Materials 155, pp. 216224.Calle, I. D. L., Cabaleiro, N., Lavilla, I., Bendicho, C., 2009. Analytical evaluation of a cup-horn sonoreactor used for ultrasound-assisted extraction of trace metals from troublesome matrices. Spectrochimica Acta Part B 64, pp. 874883.Chung, H. I., Chun, B. S., Lee, Y. J., 2006. The Combined Electrokinetic and Ultrasonic Remediation of Sand Contaminated with Heavy Metal and Organic Substance. KSCE Journal of Civil Engineering Vol. 10, No. 5, pp. 325331.Deng, J., Feng, X., Qiu, X., 2009. Extraction of heavy metal from sewage sludge using ultrasound-assisted nitric acid. Chemical Engineering Journal 152, pp. 177182.Dermont, G., Bergeron, M., Mercier, G., Richer-Lafleche M., 2008. Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials 152, pp. 131.Elik A., 2007. Ultrasonic-assisted leaching of trace metals from sediments as a function of pH. Talanta 71, pp. 790794.Gngr, H., Elik, A., 2007. Comparison of ultrasound-assisted leaching with conventional and acid bomb digestion for determination of metals in sediment samples. Microchemical Journal 86, pp. 6570.Hristozov, D., Domini, C. E., Kmetov, V., Stefanova, V., Georgieva, D., Canals, A., 2004. Direct ultrasound-assisted extraction of heavy metals from sewage sludge samples for ICP-OES analysis. Analytica Chimica Acta 516, pp. 187196.Hwang, S-S., Park, J-S., Namkoong,W.,2007. Ultrasonic-Assisted Extraction to Release Heavy Metals from Contaminated Soil. J. Ind. Eng. Chem., Vol. 13, No. 4, pp. 650-656.Huang, W. J., Chen, W. C., Chou, G. C., Chu, S. C., 2004. Chemical Speciation of Amphoteric Ions on Semi-dry Scrubber Residue and Bag-house Ash from MSWI. Journal of the Chinese Chemical Society, 51, pp. 233-237.Isoyama, M., Wada, S. I., 2007. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil. Journal of Hazardous Materials 143, pp. 636642.Kazi, T. G., Jamali, M. K., Araina, M. B., Afridi, H. I., Jalbani, N., Sarfraz, R. A., Ansari, R., 2009. Evaluation of an ultrasonic acid digestion procedure for total heavy metals determination in environmental and biological samples. Journal of Hazardous Materials 161, pp. 13911398.Kazi, T. G., Jamali, M. K., Siddiqui, A., Kazi, G. H., Arain, M. B., Afridi, H. I., 2006. An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples. Chemosphere 63, pp. 411420.Krasnodebska-Ostrega, B., Kaczorowska, M., Golimowski, J., 2006. Ultrasound-Assisted Extraction for the Evaluation of Element Mobility in Bottom Sediment Collected at Mining and Smelting PbZn Ores Area in Poland. Microchim Acta 154, pp. 3943.Kuo, S., Lai, M. S., Lin, C. W., 2006. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Environmental Pollution 144, pp. 918-925.Kyllonen, H., Pirkonen, P., Hintikka, V., Parvinen, P., Gronroos, A., Sekki, H., 2004. Ultrasonically aided mineral processing technique for remediation of soil contaminated by heavy metals. Ultrasonics Sonochemistry 11, pp. 211216.Madyiwa, S., Chimbari, M., Nyamangara, J., Bangira, C., 2002. Cumulative effects of sewage sludge and effluent mixture application on soil properties of a sandy soil under a mixture of star and kikuyu grasses in Zimbabwe. Physics and Chemistry of the Earth 27, pp. 747753.Mason, T. J., Collings, A., Sumel, A., 2004. Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrasonics Sonochemistry 11, pp. 205210.Moutsatsou, A., Gregou, M., Matsas, D., Protonotarios, V., 2006. Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities. Chemosphere 63, pp. 16321640.zkan, M. H., Grkan, R., zkan, A., Akay, M., 2005. Determination of Manganese and Lead in Roadside Soil Samples by FAAS with Ultrasound Assisted Leaching. Journal of Analytical Chemistry, Vol. 60, No. 5, pp. 469474.Pumure, I., Renton, J. J., Smart, R. B., 2009. Accelerated aqueous leaching of selenium and arsenic from coal associated rock samples with selenium speciation using ultrasound extraction. Environ Geol 56, pp. 985991.Tessier, A., Campbell, G. C., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry. 51, pp. 844-851.Visnen, A., Suontamo, R., Silvonen, J., Rintala, J., 2002. Ultrasound-assisted extraction in the determination of arsenic, cadmium, copper, lead, and silver in contaminated soil samples by inductively coupled plasma atomic emission spectrometry. Anal Bioanal Chem 373, pp. 9397.Xie, F., Li, H., Ma, Y., Li, C., Cai, T., Huang, Z., Yuan, G., 2009. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation. Journal of Hazardous Materials 170, pp. 430435.研究生:郭鼎楠研究生(外文):Ding-Nan GUO論文名稱:電鍍污泥中重金屬快速回收之研究論文名稱(外文):The expeditious recovery of heavy metal from electroplating sludge離子熔液萃取方式是近年來新穎的有效處重屬廢水方式之一,處後重金屬危害量減少,因此本研究用離子熔液作為萃取含重金屬廢水的主要萃取劑,將以含有不同重金屬之電鍍污泥加以萃取,並配合微波及超音波的方式有效縮短處理時間。因此本研究包含大部分,分別為快速合成離子液體技術探討與快速萃取重金屬之應用技術。前者包含微波快速合成技術、兩段式超音波技術,後者則有微波酸萃技術。 本研究首先以甲基咪唑為原料,在開放式微波下,使用溴丁烷進行季胺化反應,最佳反應條件為:甲基咪唑:溴丁烷的莫耳比為1:1,微波功率240 W,在90 下反應2分鐘,離子液體第一段產率可達85%,再以微波進行第二段離子液體合成,產率則可達到75%。另使用超音波混合下最佳條件為:超音波兩段式震盪混合在總反應150分鐘後,甲基咪唑:溴丁烷的莫耳比為10:11,反應溫85 ,振幅60 %為最佳的條件,產率達到75。 以開放式微波合成疏水性離子熔液在與雙硫腙螯合劑搭配萃取情況下研究結果顯示,恆溫振盪轉數設定在180 rpm,當體積比為1:10,離子熔液添加量1 mL,反應溫度室溫25 ,萃取3分鐘,重金屬廢水中重金屬銅萃取率可達90,而離子熔液所吸附的重金屬離子可利用調整不同pH使離子熔液與產物分離,具有很好的穩定性,且對環境友好。另外,以開放式超音波合成疏水性離子熔液在與EDTA螯合劑搭配萃取情況下研究結果顯示,重金屬廢水中重金屬銅之萃取率可達95以上。 國內污泥量年年遞增,以化學處理方式頗為費時又耗能,一種嶄新的方法成功地製備奈米氧化銅。首先,利用酸萃取出銅離子,然後,加入乙二醇/水溶液中,在超音波的條件下進行反應,再經由微波高溫烘乾得到氧化銅。同時,改變不同的反應條件,如分散劑劑量、超音波溫度、微波時間,最佳條件電鍍污泥:硫酸之固液比在1/20時,以微波浸提處理30分鐘、硫酸濃度0.5 M對污泥中重金屬銅溶出率達90%以上。進一步以超音波震盪30分鐘、微波30分鐘,再添加分散劑0.1 g可形成粒徑在40-50m之氧化銅,並藉由XRD鑑定氧化銅的型態及晶格結構。 傳統照相館之廢定顯影液含有銀離子的成分,環保署僅規定集中回收再次處理,而液體本身含有銀離子,為了不再造成二次污染,本研究將銀離子加以回收再製成奈米銀。一般合成奈米級粒子做法採用水熱合成法,時間長達數個小時之久,其粒徑大小約3040 nm間,且粒徑大小不易控制,無法形成高均勻性的奈米銀溶液。研究中以超音波合成總時間僅需40分鐘,平均粒徑40-50m,合成的方式與傳統方法相比可節省近2/3時間。將銀適度奈米化之後,由於表面積大幅提升,衍生出新的功能,使得其應用性大幅增加。 本研究利用離子熔液與螯合劑有效萃取重金屬離子可有效將重金屬抓取90%以上;另以微波及超音波方式快速將廢棄物有效回收再製成新製品應用上相當可觀,同時不論使用微波或是超音波的方式均可有效的縮短反應時間,增加產量,並減少廢棄物耗用,達到資源回收再利用目的。摘要- IABSTRACT- III誌謝- VI目錄- VII表目錄- X圖目錄- XI一、前言- 11.1研究動機與目的- 1二、文獻回顧- 42.1電鍍污泥性質- 42.1.1 電鍍污泥物化特性- 42.2電鍍污泥危害性物質- 42.3電鍍污泥重金屬資源化技術-52.4螯合劑抓取電鍍污泥- 52.5微波原理- 62.5.1 微波促進反應- 62.6超音波原理- 62.6.1 超音波促進反應- 92.7離子熔液- 92.7.1 離子熔液合成- 112.7.2 微波與超音波快速合成離子熔液-122.7.3 離子熔液萃取重金屬離子- 172.7.4 離子熔液回收再利用- 172.8鐵氧磁體- 192.8.1 鐵氧磁體原理- 192.8.2 微波鐵氧磁體- 232.8.3 鐵氧磁體應用- 24三、實驗方法及分析- 253.1研究架構- 253.2樣品製備- 253.2.1 微波兩段式快速合成離子熔液及應用在重金屬廢液之萃取-253.2.2 超音波離子熔液快速合成及應用在重金屬廢液處理-263.2.3 快速回收銅污泥並製備氧化銅- 273.2.4 兩段式超音波回收銀製備奈米銀的應用- 283.3 實驗儀器- 293.3.1 微波反應器(Microwave) - 293.3.2 超音波反應器(Ultrasonic) - 293.4 樣品分析- 293.4.1 感應偶和電漿原子發色光譜儀(ICP) - 293.4.2 原子吸收光譜儀(AAS) - 293.4.3 X射線(XRD) - 303.4.4 傅氏紅外光譜儀(FTIR) - 303.4.5核磁共振技術(NMR) - 31四、結果與討論4-1開放式微波快速合成離子熔液應用在重金屬廢液之萃取- 364-2兩段式超音波快速合成離子熔液在重金屬廢液之萃取應用- 534-3快速回收銅污泥並製備成氧化銅- 714-4 兩段式超音波回收銀製備成奈米銀的應用- 84五、結論- 95六、參考文獻- 97七、APPENDIXSAS1 Two-stage synthesis of microwave and ultrasound ionic liquids used in the extraction of copper metal aste-106八、RESUME AND PUBLICATION-116Ionic liquid extraction method was novel in recent years, the effective processing of one form of heavy metal waste, handling hazardous heavy metals from a decline in this study using ionic liquids as extraction of the main waste water containing heavy metals extraction agent, will contain different heavy metal sludge to be extracted and combined with microwave and ultrasound effective way to shorten the processing time.Therefore, this study includes most of order two, namely, rapid synthesis of ionic liquids technology and rapid extraction of heavy metals in the applied technology. The former contains the order microwave synthesis, two-stage ultrasonic technology, the latter of microwave acid extraction technology and ferrite.In this study first-methylimidazole as the raw material, in an open microwave, the use of butane to quaternary ammonium bromide reaction, the best reaction conditions: molar ratio of 1:1, the microwave power 240W, reaction at 105 for 2 minutes, ionic liquid yield of 86% for some, and then to carry out the second paragraph of microwave synthesis of ionic liquid, the yield can reach 75%. Under the ultrasonic, taking into account bromobutane may be volatile at room temperature using the heater response manner, using ultrasound to liquid butane with bromine with the heater to full mixing of reactants. Mixed use of ultrasound under the best conditions: ultrasonic two-stage oscillation in the total reaction mixture after 150 minutes, this time for the 10:11 molar ratio, reaction temperature 85 , 60% of the amplitude of the best of conditions, ionic liquid production rate can reach 75% effective. From the results suggest, whether the use of open microwave or ultrasonic, ionic liquids are able to yield more than 70% yield.Microwave synthesis of an open hydrophobic ionic liquids in combination with the chelating agent dithizone extraction case study results show that temperature oscillation rotation set 180 rpm, when the volume ratio of 1:10, ionic liquid dosage 1ml, room temperature 25 , extraction of 3 minutes, heavy metal extraction rate of copper in waste water up to 90%, while the adsorption of ionic liquids to adjust the metal ion can be used to adjust pH to make ionic liquids easily separated from the product, good stability, and environmentally-friendly. In addition, an ultrasonic synthetic hydrophobic ionic liquids in combination with the chelating agent EDTA extraction case study showed that the extraction rate of heavy metals in waste water up to 95%.Annual increases of domestic sludge, the chemical treatment are always the solution, rather time-consuming and energy, a new method was successfully synthesis prepared CuO nanoplates. For the preparation of CuO nanoplates, Cu sludge were using acid to extract copper ions, prepared by using of CuO powders immersed in ethylene glycol/water solution under ultrasonic conditions, and then drying by microwave high-temperature CuO nanoparticles obtained. The preparation of CuO nanoplates was studied in several experimental factors, for example reactant amount, temperature, reaction time, and capping agent. The optimal condition was found in which the solid/liquid ratio was used at 1/20 and microwave extraction processing 30min, 0.5M sulfuric acid concentration on the dissolution rate of copper sludge by 90%. Extract further to ultrasonic 30min, microwave for 30 minutes, then add 0.1g dispersant to form particle size of 40-50m copper oxide. The XRD diffraction were employed to characterize composition, morphology, and structure for CuO.Traditional studio set in the waste developer solution containing silver ions in the composition, the current Taiwan EPA only provides centralized recycling for further treatment, but the liquid itself contains silver ions, in order to not cause secondary pollution, recycling will be made of silver ions. General synthesis of nano-silver particles by hydrothermal synthesis approach, as long as 25 to 40 hours long, the particle size between a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论