已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学与统计学院课程设计报告课程: 数值分析 题目:拉格朗日插值的算法设计及应用年级: 三年级 专业: 数学与应用数学 学号: 08063008 姓名: 肖天天 指导教师: 宁 娣 2010年 12 月 8 日数学与统计学院本科课程设计 拉格朗日插值的算法设计及应用 【摘要】 本文简介拉格朗日插值,它的算法及程序和拉格朗日在实际生活中的运用。运用了拉格朗日插值的公式,以及它在MATLAB中的算法程序,并用具体例子说明。拉格朗日插值在很多方面都可以运用,具有很高的应用价值。【关键词】 拉格朗日;插值;公式;算法程序;应用;科学。一、绪论约瑟夫拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。数据建模有两大方法:一类是插值方法,另一类是拟合函数一般的说,插值法比较适合数据准确或数据量小的情形。然而Lagrange插值有很多种,1阶,2阶,n阶。我们可以利用拉格朗日插值求方程,根据它的程序求原方程的图像。下面我具体介绍分析一下拉格朗日插值的算法设计及应用。二、正文1、基本概念 已知函数y=f(x)在若干点的函数值=(i=0,1,n)一个差值问题就是求一“简单”的函数p(x):p()=,i=0,1,n, (1)则p(x)为f(x)的插值函数,而f(x)为被插值函数会插值原函数,.,为插值节点,式(1)为插值条件,如果对固定点求f()数值解,我们称为一个插值节点,f()p()称为点的插值,当min(,.,),max(,.,)时,称为内插,否则称为外插式外推,特别地,当p(x)为不超过n次多项式时称为n阶Lagrange插值。2、 Lagrange插值公式 (1)线性插值设已知 , 及=f() ,=f(),为不超过一次多项式且满足=,=,几何上,为过(,),(,)的直线,从而得到 =+(x-). (2)为了推广到高阶问题,我们将式(2)变成对称式=(x)+(x).其中,(x)=,(x)=。均为1次多项式且满足(x)=1且(x)=0。或(x)=0且(x)=1。两关系式可统一写成= 。 (3) (2)n阶Lagrange插值设已知,.,及=f()(i=0,1,.,n),为不超过n次多项式且满足(i=0,1,.n).易知=(x)+.+.其中,均为n次多项式且满足式(3)(i,j=0,1,.,n),再由(ji)为n次多项式的n个根知=c.最后,由c=,i=0,1,.,n.总之,=,=式为n阶Lagrange插值公式,其中,(i=0,1,.n)称为n阶Lagrange插值的基函数。3,Lagrange插值余项设,.,a,b,f(x)在a,b上有连续的n+1阶导数,为f(x)关于节点,.,的n阶Lagrange插值多项式,则对任意xa,b,其中,位于,.,及x之间(依赖于x),(x)=Eg1:已知函数表sin=0.5000,sin=0.7071,sin=0.8660,分别由线性插值与抛物插值求sin的数值解,并由余项公式估计计算结果的精度。解:(1)这里有三个节点,线性插值需要两个节点,根据余项公式,我们选取前两个节点,易知:sin()=0.5000+(-) =0.5000+0.2071=0.6381截断误差,=,得知结果至少有1位有效数字。(2) 易知sin0.7071+=0.8660=0.6434截断误差为:得知结果至少有两位数字。比较本题精确解sin=0.642787609.,实际误差限分别为0.0047和0.00062。4,Lagrange插值算法和程序function yy=nalagr(x,y,xx) %用途:Lagrange插值法数值求解;格式:yy=nalagr(x,y,xx)%x是节点向量,y是节点上的函数值,xx是插值点(可以多个),yy返回插值m=length(x);n=length(y);if m=n,error(向量x与y的长度必须一致);ends=0;for i=1:n t=ones(1,length(xx); for j=1:n if j=i t=t.*(xx-x(i)/(x(i)-x(j); endends=s+t*y(i);endyy=s;用以上程序的Eg1的结果为 x=pi*1/6 1/4;y=0.5 0.7071;xx=2*pi/9; yy1=nalagr(x,y,xx)yy1 = -0.5690 x=pi*1/6 1/4 1/3;y=0.5 0.7071 0.866; yy2=nalagr(x,y,xx)yy2 = 0.8023 fplot(sin,pi/6,pi/3);hold on; plot(x,y,o,xx,0.6381,g,xx,0.6434,rv);hold off;图形为3,Lagrange插值应用 在物理化学,资产价值鉴定工作和计算某一时刻的卫星坐标和钟差等这些方面可以应用Lagrange插值。采用拉格朗日插值法计算设备等功能重置成本,计算精度较高,方法快捷。但是这方法只能针对可比性较强的标准设备,方法本身也只考虑了单一功能参数,它的应用范围因此受到了一定的限制。作为一种探索,我们可以将此算法以及其它算法集成与计算机评估分析系统中,作为传统评估分析方法的辅助参考工具,以提高资产价值鉴定工作的科学性和准确性。三,结论 拉格朗日插值模型简单,结构紧凑,是经典的插值法。但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。且当增大插值阶数时容易出现龙格现象。 参考文献1, 序号作者文章名J学术刊物名,年,卷(期):引用部分起止页2,约瑟夫拉格朗日http:/baike.baidu.c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古乌兰察布市(2024年-2025年小学五年级语文)统编版能力评测(下学期)试卷及答案
- 内蒙古乌兰察布市(2024年-2025年小学五年级语文)人教版专题练习((上下)学期)试卷及答案
- 矿区污水处理设备实施方案
- 房建项目旋挖桩施工技术方案
- 专题02 病句辨析与句子排序(考点串讲)-七年级语文上学期期末考点大串讲(统编版2024·五四学制)
- 历史-2025届江苏省南通市高三11月期中考试卷和答案
- 店面工作规划
- 分级护理制度与老年护理服务的整合
- 农业生产设施建设合同
- 社区志愿者因病缺席跟踪制度
- 电力专业标准化技术委员会管理细则
- 三年级下册音乐课件 第七课 游子吟 湘艺版 19张
- 《用一元一次方程求解数轴上动点问题》 课件
- Loadport控制系统设计毕业论文
- 劳动第二单元《带着家人去秋游》教学设计教案
- APOGEE系统集成培训ppt课件
- 小学四年级下册科学-1.2点亮小灯泡-教科版(20张)(1)(1)ppt课件
- 10kV线路损耗计算
- 群文阅读《父母的爱》
- 家长学校教研活动记录表
- 高效课堂合作学习小组
评论
0/150
提交评论