2018-2018-2019版高中数学第二章证明不等式的基本方法本讲整合课件新人教选修.pptx_第1页
2018-2018-2019版高中数学第二章证明不等式的基本方法本讲整合课件新人教选修.pptx_第2页
2018-2018-2019版高中数学第二章证明不等式的基本方法本讲整合课件新人教选修.pptx_第3页
2018-2018-2019版高中数学第二章证明不等式的基本方法本讲整合课件新人教选修.pptx_第4页
2018-2018-2019版高中数学第二章证明不等式的基本方法本讲整合课件新人教选修.pptx_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本讲整合 答案 分析法 放缩法 作差比较法 作商比较法 专题一 专题二 专题三 专题一 利用比较法证明不等式比较法证明不等式的依据是不等式的意义及实数比较大小的充要条件 作差比较法证明不等式的一般步骤 1 作差 2 恒等变形 3 判断结果的符号 4 下结论 其中 变形是证明推理中一个承上启下的关键 变形的目的在于判断差的符号 而不是考虑差能否化简或值是多少 作商比较法要注意判断分子 分母的符号 专题一 专题二 专题三 例1设a b c均为大于1的正数 且ab 10 求证logac logbc 4lgc 分析 利用作差比较法 通过因式分解判断符号 从而证明不等式 专题一 专题二 专题三 专题一 专题二 专题三 专题二 利用综合法与分析法证明不等式1 综合法证明不等式的依据 已知的不等式的基本性质 已知的重要不等式以及逻辑推理的基本理论 综合法证明不等式的思维方向是 顺推 即由已知的不等式出发 逐步推出其必要条件 由因导果 最后推导出所要证明的不等式成立 证明时要注意 作为依据和出发点的几个重要不等式 已知或已证 成立的条件往往不同 应用时要先考虑是否具备应有的条件 避免错误 如一些带等号的不等式 应用时要清楚取等号的条件 即对重要不等式中 当且仅当 时 等号成立 的理由要理解掌握 专题一 专题二 专题三 2 分析法证明不等式的依据也是不等式的基本性质 已知的重要不等式和逻辑推理的基本理论 分析法证明不等式的思维方向是 逆推 即由待证的不等式出发 逐步寻找使它成立的充分条件 执果索因 最后得到的充分条件是已知 或已证 的不等式 当要证的不等式不知从何入手时 可考虑用分析法去证明 特别是对于条件简单而结论复杂的题目往往更为有效 专题一 专题二 专题三 分析 1 构造等差数列求解 2 用比较法证明 专题一 专题二 专题三 专题一 专题二 专题三 分析 题目已知条件较少 不宜用综合法证明 故考虑用分析法证明 专题一 专题二 专题三 专题一 专题二 专题三 证明 因为x y R 且 x 1 y 1 即证1 x2y2 2xy 1 x2 y2 x2y2 即 2xy x2 y2 亦即x2 y2 2xy 而x2 y2 2xy显然成立 故原不等式成立 专题一 专题二 专题三 专题三 利用反证法与放缩法证明不等式1 运用反证法证明不等式 主要有以下两个步骤 1 作出与所证不等式相反的假设 2 从条件和假设出发 应用正确的推理方法 推出矛盾的结论 否定假设 从而证明原不等式成立 2 反证法常用于直接证明困难或以否定形式出现的命题 涉及 都是 都不是 至少 至多 等形式的命题 常用反证法 3 用放缩法证明不等式时 关键是对不等式的一边适当地扩大或缩小以方便化简 使之与不等式的另一边的关系更为明显 从而证明原不等式成立 专题一 专题二 专题三 例4已知01 y 2 z 1 z 2 x 1均成立 则三式相乘有xyz 2 x 2 y 2 z 1 因为0 x 2 所以0 x 2 x x2 2x x 1 2 1 1 同理0 y 2 y 1 0 z 2 z 1 所以三式相乘得0 xyz 2 x 2 y 2 z 1 与 矛盾 故假设不成立 因此x 2 y y 2 z z 2 x 不都大于1 专题一 专题二 专题三 变式训练3已知a b c d R a b 1 c d 1 ac bd 1 求证 a b c d中至少有一个是负数 证明 假设a b c d都是非负数 即a 0 b 0 c 0 d 0 因为a b 1 c d 1 所以 a b c d 1 即 ac bd ad bc 1 因为a b c d都是非负数 所以bc ad 0 所以ac bd 1 ad bc 1 这与ac bd 1矛盾 故假设错误 即a b c d中至少有一个是负数 专题一 专题二 专题三 例5设an是函数f x x3 n2x 1 n N 的零点 且0分析 先根据函数零点的定义得到an的表达式 再利用放缩法证明结论成立 专题一 专题二 专题三 专题一 专题二 专题三 变式训练4已知a b c为三角形的三边 求证 1 2 3 4 考点 不等式证明1 2016全国 高考 已知函数 M为不等式f x 2的解集 1 求M 2 证明 当a b M时 a b 1 ab 1 2 3 4 2 由 1 知 当a b M时 1 a 1 1 b 1 从而 a b 2 1 ab 2 a2 b2 a2b2 1 a2 1 1 b2 0 因此 a b 1 ab 1 2 3 4 2 2015湖南高考 设a 0 b 0 且a b 证明 1 a b 2 2 a2 a0得0 a 1 同理 0 b 1 从而ab 1 这与ab 1矛盾 故a2 a 2与b2 b 2不可能同时成立 1 2 3 4 3 2014江苏高考 已知x 0 y 0 证明 1 x y2 1 x2 y 9xy 1 2 3 4 4 2013全国 高考 设a b c均为正数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论