高中数学第二章空间向量与立体几何2空间向量的运算二课件北师大版选修2_1_第1页
高中数学第二章空间向量与立体几何2空间向量的运算二课件北师大版选修2_1_第2页
高中数学第二章空间向量与立体几何2空间向量的运算二课件北师大版选修2_1_第3页
高中数学第二章空间向量与立体几何2空间向量的运算二课件北师大版选修2_1_第4页
高中数学第二章空间向量与立体几何2空间向量的运算二课件北师大版选修2_1_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章空间向量与立体几何 2空间向量的运算 二 学习目标1 掌握空间向量数乘运算的定义及数乘运算的运算律 2 了解平行 共线 向量 共面向量的意义 掌握它们的表示方法 3 理解共线向量的充要条件和共面向量的充要条件及其推论 并能应用其证明空间向量的共线 共面问题 题型探究 问题导学 内容索引 当堂训练 问题导学 知识点一空间向量的数乘运算 思考 实数 和空间向量a的乘积 a的意义是什么 向量的数乘运算满足哪些运算律 当 0时 a和a方向相同 当 0时 当 a和a方向相反 a的长度是a的长度的 倍 空间向量的数乘运算满足分配律及结合律 分配律 a b a b 结合律 a a 答案 梳理 1 实数与向量的积与平面向量一样 实数 与空间向量a的乘积 a仍然是一个向量 称为向量的数乘运算 记作 a 其长度和方向规定如下 a 当 0时 a与向量a方向相同 当 0时 a与向量a方向 当 0时 a 0 2 空间向量数乘运算满足以下运算律 a a b 1 2 a 拓展 a a 相反 a b 1a 2a 知识点二共线向量与共面向量 思考1 回顾平面向量中关于向量共线的知识 给出空间中共线向量的定义 如果表示空间向量的有向线段所在的直线互相平行或重合 那么这些向量叫作共线向量或平行向量 答案 思考2 空间中任何两个向量都是共面向量 这个结论是否正确 正确 根据向量相等的定义 可以把向量进行平移 空间任意两个向量都可以平移到同一平面内 成为共面向量 答案 梳理平行 共线 向量 平行或重合 a b 方向向量 2 共面向量 p xa yb 唯一 平面 题型探究 类型一向量共线问题 求证 E F B三点共线 证明 判定向量a b b 0 共线 只需利用已知条件找到x 使a xb即可 证明点共线 只需证明对应的向量共线 反思与感悟 设AC中点为G 连接EG FG 解答 类型二空间向量的数乘运算及应用 解答 解答 解答 解答 引申探究 反思与感悟 利用数乘运算进行向量表示的技巧 1 数形结合 利用数乘运算解题时 要结合具体图形 利用三角形法则 平行四边形法则 将目标向量转化为已知向量 2 明确目标 在化简过程中要有目标意识 巧妙运用中点性质 解答 类型三空间向量共面问题 证明 由于四边形ABCD是平行四边形 由向量共面的充要条件知E F G H四点共面 反思与感悟 1 利用四点共面求参数向量共面的充要条件的实质是共面的四点中所形成的两个不共线的向量一定可以表示其他向量 对于向量共面的充要条件 不仅会正用 也要能够逆用它求参数的值 2 证明空间向量共面或四点共面的方法 向量表示 设法证明其中一个向量可以表示成另两个向量的线性组合 即若p xa yb 则向量p a b共面 用平面 寻找一个平面 设法证明这些向量与该平面平行 解答 证明 求证 A B C D四点共面 E F G H四点共面 证明 证明 当堂训练 2 3 4 5 1 2a b 2 a 1 b 2a b与a b共面 1 对于空间的任意三个向量a b 2a b 它们一定是A 共面向量B 共线向量C 不共面向量D 既不共线也不共面的向量 答案 解析 2 3 4 5 1 答案 解析 2 3 4 5 1 8 答案 解析 4 以下命题 两个共线向量是指在同一直线上的两个向量 共线的两个向量互相平行 共面的三个向量是指在同一平面内的三个向量 共面的三个向量是指平行于同一平面的三个向量 其中正确命题的序号是 答案 解析 根据共面与共线向量的定义判定 易知 正确 2 3 4 5 1 2 3 4 5 1 解答 5 已知A B M三点不共线 对于平面ABM外的任意一点O 判断在下列各条件下的点P与点A B M是否共面 由共面向量定理的推论知 点P与点A B M共面 3 1 1 1 点B与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论