




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分解随机变量 简求数学期望离散型随机变量的分布列反映了随机变量所有可能取值的概率分布的总体情况,课本求离散型随机变量的数学期望的定义公式就是在概率分布列的基础上给出的。因此求离散型随机变量的数学期望的一般方法是:先求的概率分布列,然后用期望的定义公式进行计算。然而,当随机变量的取值较多或背景复杂时,直接求的分布列往往困难重重或运算量较大。若能将背景复杂的随机变量分解成若干个背景单一的随机变量,即,则可运用随机变量线性的期望等于随机变量期望的线性即公式来求的期望。一、两个重要分布数学期望公式的简证二项分布和超几何分布是两种重要的常用的概率分布,它们的地位和作用如同等差数列等比数列在数列中的地位和作用一样,举足轻重至关重要。下面给出这两个重要分布数学期望公式的一个简证。1.二项分布的数学期望公式若随机变量,则。课本是利用组合数的性质进行证明的,有一定难度,现用分解的方法给出如下简证。证明 令,则,易知服从两点分布,即,所以,故。2.超几何分布的数学期望公式在含有件次品的件产品中,不放回地任取件,其中恰有件次品,则称随机变量服从超几何分布,则有。文1、2用组合数性质证明了此公式,但过程较复杂证明难度较大。下面将次品数分解成每次抽取的次品数之和,然后用公式求期望,简证如下:证明 令,则,易知服从两点分布,即,所以,故。二、运用变量分解期望公式简求数学期望举例下面通过典型例题说明用随机变量分解的期望公式在简求数学期望的作用,读者可用直接求的分布列然后求期望的方法进行解法比较,体会分解随机变量简求数学期望的精妙。先看一个与错位排列有关的名题。例1 设有标号为的盒子和标号为的个小球,将这个小球任意地放入这盒子,每个盒子放入一个小球。若号球放入号盒子,则称该球放对了,否则称放错了。表示放对了的球的个数,求的数学期望。文3由特例时发现,继续验证知时仍然成立,于是猜想对任意的,恒有(实际上对任意的正整数恒有)。然后通过巧妙的构造对比并结合组合数性质给出了证明,证法虽然精彩但很难想到。下面用分解随机变量的方法给出简解如下:例2某单位为绿化环境,移栽了甲乙两种大树各两株。设甲乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响。求移栽的4株大树中成活的株数的期望。例3 某人从地面开始上一百级台阶,每步上一级的概率是,每步上两级的概率是,若此人共走了10步,求他共上台阶级数的数学期望。例4某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人。现采用分层抽样方法(层内采用不放回简单随机抽样)从甲乙两组中共抽3名工人进行技术考核。()求从甲乙两组中各抽取的人数;()记表示抽取的3名工人中男工人数,求的数学期望。例5 口袋里装有大小相同的卡片8张,其中三张标有数字1,三张标有数字2,两张标有数字3。第一次从口袋里任意抽取一张,放回口袋后,第二次再任意抽取一张,记第一次与第二次取到卡片上数字之和为,求的数学期望。例6甲乙丙三人参加一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约。乙丙则约定:两人面试都合格就一同签约,否则两人都不签约。设每人面试合格的概率都是,且面试是否合格互不影响。求签约人数的数学期望。例7某工厂生产甲乙两种产品,甲产品的一等品率为,二等品率为;乙产品的一等品率为,二等品率为。生产一件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产一件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各件产品相互独立,求生产两件件甲产品和三件乙产品可获得的利润万元的数学期望。综上所述,将背景复杂的随机变量分解成若干个背景单一的随机变量,即将背景复杂的随机变量用背景单一的若干个随机变量线性表示,然后分别求出各个单一的随机变量的数学期望,最后用随机变量线性的期望等于随机变量期望的线性进行求解。这样通过分解随机变量,将混合化为单一,将复杂化为简单,将一般化为特殊(二项分布或超几何分布),从而达到化难为易以简驭繁简化运算之功效。分解随机变量 简求数学期望离散型随机变量的分布列反映了随机变量所有可能取值的概率分布的总体情况,课本求离散型随机变量的数学期望的定义公式就是在概率分布列的基础上给出的。因此求离散型随机变量的数学期望的一般方法是:先求的概率分布列,然后用期望的定义公式进行计算。然而,当随机变量的取值较多或背景复杂时,直接求的分布列往往困难重重或运算量较大。若能将背景复杂的随机变量分解成若干个背景单一的随机变量,即,则可运用随机变量线性的期望等于随机变量期望的线性即公式来求的期望。一、两个重要分布数学期望公式的简证二项分布和超几何分布是两种重要的常用的概率分布,它们的地位和作用如同等差数列等比数列在数列中的地位和作用一样,举足轻重至关重要。下面给出这两个重要分布数学期望公式的一个简证。1.二项分布的数学期望公式若随机变量,则。课本是利用组合数的性质进行证明的,有一定难度,现用分解的方法给出如下简证。证明 令,则,易知服从两点分布,即,所以,故。2.超几何分布的数学期望公式在含有件次品的件产品中,不放回地任取件,其中恰有件次品,则称随机变量服从超几何分布,则有。文1、2用组合数性质证明了此公式,但过程较复杂证明难度较大。下面将次品数分解成每次抽取的次品数之和,然后用公式求期望,简证如下:证明 令,则,易知服从两点分布,即,所以,故。二、运用变量分解期望公式简求数学期望举例下面通过典型例题说明用随机变量分解的期望公式在简求数学期望的作用,读者可用直接求的分布列然后求期望的方法进行解法比较,体会分解随机变量简求数学期望的精妙。先看一个与错位排列有关的名题。例1 设有标号为的盒子和标号为的个小球,将这个小球任意地放入这盒子,每个盒子放入一个小球。若号球放入号盒子,则称该球放对了,否则称放错了。表示放对了的球的个数,求的数学期望。文3由特例时发现,继续验证知时仍然成立,于是猜想对任意的,恒有(实际上对任意的正整数恒有)。然后通过巧妙的构造对比并结合组合数性质给出了证明,证法虽然精彩但很难想到。下面用分解随机变量的方法给出简解如下:解 令,则,易知服从两点分布,即,所以,故。例2(2009年高考重庆卷理科第17题改编)某单位为绿化环境,移栽了甲乙两种大树各两株。设甲乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响。求移栽的4株大树中成活的株数的期望。解 用分别表示甲乙两种大树各成活的株数,则,且,。由公式得,再由公式得,。例3 某人从地面开始上一百级台阶,每步上一级的概率是,每步上两级的概率是,若此人共走了10步,求他共上台阶级数的数学期望。解 用分别表示每步上一级台阶和每步上两级台阶的步数,则,且,。由公式得,再由公式得,。例4(2009高考全国卷理科第20题改编)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人。现采用分层抽样方法(层内采用不放回简单随机抽样)从甲乙两组中共抽3名工人进行技术考核。()求从甲乙两组中各抽取的人数;()记表示抽取的3名工人中男工人数,求的数学期望。解()易求得甲组抽2人,乙组抽1人。()设甲组抽出的2人中男工人数为人,乙组抽出的1人中男工人数为人,则。由超几何分布的数学期望公式得,再由公式得,。例5 口袋里装有大小相同的卡片8张,其中三张标有数字1,三张标有数字2,两张标有数字3。第一次从口袋里任意抽取一张,放回口袋后,第二次再任意抽取一张,记第一次与第二次取到卡片上数字之和为,求的数学期望。解 用表示第次取到卡片上的数字,则,易求得的分布列如表。所以,所以。例6(2008年高考湖南卷理科第16题改编)甲乙丙三人参加一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约。乙丙则约定:两人面试都合格就一同签约,否则两人都不签约。设每人面试合格的概率都是,且面试是否合格互不影响。求签约人数的数学期望。解 设甲签约人数为,乙丙两人签约总人数为,则,且易求得的分布列如表所示。易求得,所以。例7(2010年高考江苏卷理科第22题改编)某工厂生产甲乙两种产品,甲产品的一等品率为,二等品率为;乙产品的一等品率为,二等品率为。生产一件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产一件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各件产品相互独立,求生产两件件甲产品和三件乙产品可获得的利润万元的数学期望。解 设生产一件甲产品和一件乙产品获得的利润分别为万元,则。易求得的分布列如表所示。则,。所以。综上所述,将背景复杂的随机变量分解成若干个背景单一的随机变量,即将背景复杂的随机变量用背景单一的若干个随机变量线性表示,然后分别求出各个单一的随机变量的数学期望,最后用随机变量线性的期望等于随机变量期望的线性进行求解。这样通过分解随机变量,将混合化为单一,将复杂化为简单,将一般化为特殊(二项分布或超几何分布),从而达到化难为易以简驭繁简化运算之功效。参考文献:陈和平。对高中新教材(选修2-3)的一个补充。数学通讯,2009(2)下半月。蒲云飞。对高中新教材一个补充的补充。中学数学教学,2010(1)。鲍瑞华。一道概率题的拓展与证明。数学通讯,2010(7)上半月。2011-08-09人教网下载: 关闭
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 理财师考试考后总结及反思试题及答案
- 微生物检验信息技术应用试题及答案
- 证券交易所功能与2025年考试的关系试题及答案
- 企业财务信息透明度探讨试题及答案
- 2025年考试真题解析试题及答案
- 银行从业资格证考试科技应用前景分析试题及答案
- 项目调度技巧与工具比较试题及答案
- 注会考试重要考证点分析试题及答案
- 2025年证券从业资格证考试预测题及试题及答案
- 2025年证券从业资格证解读政策变化试题及答案
- 2025安徽中医药大学辅导员考试题库
- 我爱刷牙幼儿课件
- 智慧树知到《演讲学(同济大学)》2025章节测试附答案
- 高等数学(慕课版)教案 教学设计-3.4函数的单调性与极值;3.5函数的最值及其应用
- 政府审计 课件 第五章 金融审计
- 2025年度文化产业竞业禁止与知识产权保护协议
- 孕产妇分娩恐惧预防和管理的最佳证据总结
- 2025年国核铀业发展有限责任公司招聘笔试参考题库含答案解析
- 国家开放大学《小企业管理基础》综合练习题形成性考核参考答案
- 吊装设备知识培训课件
- 2025山东能源集团中级人才库选拔高频重点提升(共500题)附带答案详解
评论
0/150
提交评论