




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
经典习题11. 若函数的定义域为,则函数的定义域为( )A. B. C. D.2. 若 A102 B99 C101 D1003. 定义R上的函数满足:( ) A B2 C4 D64. 定义在区间(-1,1)上的减函数满足:。若恒成立,则实数的取值范围是_.5. 已知函数是定义在(0,+)上的增函数,对正实数,都有:成立.则不等式的解集是_.6. 已知函数是定义在(-,3上的减函数,已知对恒成立,求实数的取值范围。7. 已知是定义在R上的不恒为零的函数,且对于任意的都满足: . (1)求的值; (2)判断的奇偶性,并证明你的结论; (3)若,求数列的前项和.8. 定义在R上的函数y=f(x),f(0)0,当x0时,f(x)1,且对任意的a、bR,有f(a+b)=f(a)f(b),(1) 求证:f(0)=1;(2) 求证:对任意的xR,恒有f(x)0;(3)证明:f(x)是R上的增函数;(4)若f(x)f(2x-x2)1,求x的取值范围。9. 已知函数的定义域为R,对任意实数都有,且,当时, 0. (1)求; (2)求和; (3)判断函数的单调性,并证明.10. 函数的定义域为R,并满足以下条件:对任意,有0;对任意,有;. (1)求的值; (2)求证: 在R上是单调减函数; (3)若且,求证:.11. 已知函数的定义域为R,对任意实数都有,且当时,. (1)证明:; (2)证明: 在R上单调递减; (3)设A=,B=,若 =,试确定的取值范围.12. 已知函数是定义域为R的奇函数,且它的图象关于直线对称. (1)求的值; (2)证明: 函数是周期函数; (3)若求当时,函数的解析式,并画出满足 条件的函数至少一个周期的图象.13. 函数对于x0有意义,且满足条件减函数。 (1)证明:; (2)若成立,求x的取值范围。14. 设函数在上满足,且在闭区间0,7上,只有 (1)试判断函数的奇偶性; (2)试求方程=0在闭区间-2005,2005上的根的个数, 并证明你的结论 1. B 2. A 3. A 4. ,解:由得, ,得5. ;解:令,则,则. 函数是定义在(0,+)上的增函数 , 由得,不等式的解集为。6. ;解:等价于 7. (1)解:令,则 令,则 (2)证明:令,则, 令,则 是奇函数。 (3)当时,令,则 故,所以,故8. (1)令a=b=0,则f(0)=f(0)2f(0)0 f(0)=1 (2)令a=x,b=-x则 f(0)=f(x)f(-x) 由已知x0时,f(x)10,当x0,f(-x)0又x=0时,f(0)=10对任意xR,f(x)0(3)任取x2x1,则f(x2)0,f(x1)0,x2-x10 f(x2)f(x1) f(x)在R上是增函数(4)f(x)f(2x-x2)=fx+(2x-x2)=f(-x2+3x)又1=f(0),f(x)在R上递增由f(3x-x2)f(0)得:3x-x20 0x0, 令得,(2)任取任取,则令,故 函数的定义域为R,并满足以下条件:对任意,有0;对任意,有;函数是R上的单调减函数.(3) 由(1)(2)知,而11. (1)证明:令,则 当时,故,当 时, 当时,则 (2)证明: 任取,则,0,故0时,f(x)1,且对任意的a、bR,有f(a+b)=f(a)f(b),(3) 求证:f(0)=1;(4) 求证:对任意的xR,恒有f(x)0;(3)证明:f(x)是R上的增函数;(4)若f(x)f(2x-x2)1,求x的取值范围。解 (1)令a=b=0,则f(0)=f(0)2f(0)0 f(0)=1(2)令a=x,b=-x则 f(0)=f(x)f(-x) 由已知x0时,f(x)10,当x0,f(-x)0又x=0时,f(0)=10对任意xR,f(x)0(3)任取x2x1,则f(x2)0,f(x1)0,x2-x10 f(x2)f(x1) f(x)在R上是增函数(4)f(x)f(2x-x2)=fx+(2x-x2)=f(-x2+3x)又1=f(0),f(x)在R上递增由f(3x-x2)f(0)得:3x-x20 0x2时,4. 已知f(x)在(1,1)上有定义,f()1,且满足x,y(1,1)有f(x)f(y)f()证明:f(x)在(1,1)上为奇函数;对数列x1,xn1,求f(xn);求证()证明:令xy0,2f(0)f(0),f(0)0令yx,则f(x)f(x)f(0)0f(x)f(x)0 f(x)f(x)f(x)为奇函数 ()解:f(x1)f()1,f(xn1)f()f()f(xn)f(xn)2f(xn)2即f(xn)是以1为首项,2为公比的等比数列f(xn)2n1()解: 而 6.已知函数的定义域为,且同时满足:(1)对任意,总有;(2)(3)若且,则有.(I)求的值;(II)求的最大值;(III)设数列的前项和为,且满足.求证:.解:(I)令,由(3),则由对任意,总有 (II)任意且,则 (III) ,即。 故即原式成立。 7. 对于定义域为的函数,如果同时满足以下三条:对任意的,总有;若,都有成立,则称函数为理想函数(1) 若函数为理想函数,求的值;(2)判断函数是否为理想函数,并予以证明;(3) 若函数为理想函数,假定,使得,且,求证解:(1)取可得又由条件,故(2)显然在0,1满足条件;-也满足条件 若,则 ,即满足条件, 故理想函数 (3)由条件知,任给、0,1,当时,由知0,1,若,则,前后矛盾;若,则,前后矛盾故 8. 已知定义在R上的单调函数,存在实数,使得对于任意实数,总有恒成立。()求的值;()若,且对任意正整数,有, ,求数列an的通项公式; ()若数列bn满足,将数列bn的项重新组合成新数列,具体法则如下:,求证:。解:()令,得,令,得,由、得,又因为为单调函数,()由(1)得,()由Cn的构成法则可知,Cn应等于bn中的n项之和,其第一项的项数为1+2+(n1)+1=+1,即这一项为2+11=n(n1)+1Cn=n(n1)+1+n(n1)+3+n(n1)+2n1=n2(n1)+=n3 当时,解法2:9.设函数是定义域在上的单调函数,且对于任意正数有,已知.(1)求的值;(2)一个各项均为正数的数列满足:,其中是数列的前n项的和,求数列的通项公式;(3)在(2)的条件下,是否存在正数,使 对一切成立?若存在,求出M的取值范围;若不存在,说明理由.解:(1),令,有,.再令,有, (2),又是定义域上单调函数, 当时,由,得,当时, 由,得,化简,得,即,数列为等差数列. ,公差.,故. (3),令=,而. =, ,数列为单调递增函数,由题意恒成立,则只需=, ,存在正数,使所给定的不等式恒成立,的取值范围为.11. 设函数f(x)定义在R上,对于任意实数m、n,恒有,且当x0时,0f(x)1。(1)求证:f(0)=1,且当x1;(2)求证:f(x)在R上单调递减;(3)设集合,若,求a的取值范围。解:(1)令m=1,n=0,得f(1)= f(1)f(0)又当x0时,0 f(x)1,所以f(0)=1设x0令m=x,n=x,则f(0)= f(x)f(x)所以f(x)f(x)=1又0 f(x)0恒成立所以所以所以f(x2)0使,试问f(x)是否为周期函数?若是,指出它的一个周期;若不是,请说明理由。解:(1)令a=b=0则f(0)+ f(0)=2 f(0)f(0)所以2 f(0)f(0)1=0又因为,所以f(0)=1(2)令a=0,b=x,则f(x)+ f(x)=2 f(0)f(x)由f(0)=1可得f(x)= f(x)所以f(x)是R上的偶函数。(3)令,则因为所以f(x+c)+ f(x)=0所以f(x+c)= f(x)所以f(x+2c)= f(x+c)= f(x)= f(x)所以f(x)是以2c为周期的周期函数。16.设定义在上的函数对于任意都有成立,且,当时,。(1)判断f(x)的奇偶性,并加以证明;(2)试问:当-20032003时,是否有最值?如果有,求出最值;如果没有,说明理由;(3)解关于的不等式,其中.分析与解:令x=y=0,可得f(0)=0令y=-x,则f(0)=f(x)+f(x),f(x)= f(x),f(x)为奇函数设3x1x23,y=x1,x=x2则f(x2x1)=f(x2)+f(x1)=f(x2)f(x1),因为x0时,f(x)0,故f(x2x1)0,即f(x2)f(x1)0。f(x2)f(x1)、f(x)在区间2003、2003上单调递减x=2003时,f(x)有最大值f(2003)=f(2003)=f(2002+1)=f(2002)+f(1)=f(2001)+f(1)+f(1)=2003f(1)=4006。x=2003时,f(x)有最小值为f(2003)= 4006。由原不等式,得f(bx2) f(b2x)f(x) f(b)。即f(bx2)+f(b2x)2f(x)+f(b)f(bx2b2x)2 f(xb),即fbx(xb)f(xb)+f(xb)fbx(xb)f2 f(xb)由f(x)在xR上单调递减,所以bx(xb)2(xb),(xb)(bx2) 0b22, b或b当b时,b,不等式的解集为当b时,b,不等式的解集为当b=时,不等式的解集为当b=时,不等式解集为17.已知定义在上的函数满足:(1)值域为,且当时,;(2)对于定义域内任意的实数,均满足:试回答下列问题:()试求的值;()判断并证明函数的单调性;()若函数存在反函数,求证:分析与解:()在中,令,则有即:也即:由于函数的值域为,所以,所以()函数的单调性必然涉及到,于是,由已知,我们可以联想到:是否有?()这个问题实际上是:是否成立?为此,我们首先考虑函数的奇偶性,也即的关系由于,所以,在中,令,得所以,函数为奇函数故()式成立所以,任取,且,则,故且所以,所以,函数在R上单调递减()由于函数在R上单调递减,所以,函数必存在反函数,由原函数与反函数的关系可知:也为奇函数;在上单调递减;且当时,为了证明本题,需要考虑的关系式在()式的两端,同时用作用,得:,令,则,则上式可改写为:不难验证:对于任意的,上式都成立(根据一一对应)这样,我们就得到了的关系式这个式子给我们以提示:即可以将写成的形式,则可通过裂项相消的方法化简求证式的左端事实上,由于,所以,所以,点评:一般来说,涉及函数奇偶性的问题,首先应该确定的值19.设函数的定义域为全体R,当xbc1,且a、b、c成等差数列,求证:;(3)(本小题只理科做)若f(x) 单调递增,且mn0时,有,求证:解:(1)取x=1,q=2,有若存在另一个实根,使得(2),则0,又a+c=2b,ac-b=即acb(3)又令m=b,n=,b且q则f(m)+f(n)=(qf(b)=f(mn)=0且即4m=,由0n1得,23. 设是定义域在上的奇函数,且其图象上任意两点连线的斜率均小于零.(l)求证在上是减函数;(ll)如果,的定义域的交集为空集,求实数的取值范围;(lll)证明若,则,存在公共的定义域,并求这个公共的空义域.解:(1)奇函数的图像上任意两点连线的斜率均为负 对于任意且有从而与异号在上是减函数(2) 的定义域为 的定义域为 上述两个定义域的交集为空集 则有: 或解得:或故c的取值范围为或(3) 恒成立 由(2)知:当时 当或时且 此时的交集为当 且 此时的交集为故时,存在公共定义域,且当或时,公共定义域为;当时,公共定义域为.28.定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x0时f(x)0恒成立.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)证明f(x)为减函数;若函数f(x)在-3,3)上总有f(x)6成立,试确定f(1)应满足的条件;解:(1)由已知对于任意xR,yR,f(x+y)=f(x)+ f(y)恒成立令x=y=0,得f(0+0)= f(0)+ f(0),f(0)=0令x=-y,得f(x-x)= f(x)+ f(-x)=0对于任意x,都有f(-x)= - f(x)f(x)是奇函数.(2)设任意x1,x2R且x1x2,则x2-x10,由已知f(x2-x1)0(1)又f(x2-x1)= f(x2)+ f(-x1)= f(x2)- f(x1)(2)由(1)(2)得f(x1)f(x2),根据函数单调性的定义知f(x0在(-,+)上是减函数.f(x)在-3,3上的最大值为f(-3).要使f(x)6恒成立,当且仅当f(-3)6,又f(-3)= - f(3)= - f(2+1)=- f(2)+ f(1)= - f(1)+ f(1)+ f(1)= -3 f(1),f(1)-2.(3) f(ax2)- f(x) f(a2x)- f(a)f(ax2)- f(a2x)nf(x)- f(a)f(ax2-a2x)nf(x-a)(10分)由已知得:fn(x-a)=nf(x-a)f(ax2-a2x)fn(x-a)f(x)在(-,+)上是减函数ax2-a2xn(x-a).即(x-a)(ax-n)0,a0,(x-a)(x-)0,(11分)讨论:(1)当a0,即a-时,原不等式解集为x | x或xa;(2)当a=0即a=-时,原不等式的解集为;(3)当a0时,即-a0时,原不等式的解集为x | xa或x33.己知函数f(x)的定义域关于原点对称,且满足以下三条件:当是定义域中的数时,有;f(a)1(a0,a是定义域中的一个数);当0x2a时,f(x)0。试问:(1)f(x)的奇偶性如何?说明理由。(2)在(0,4a)上,f(x)的单调性如何?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 花茶创意美术课件
- 部门经理培训
- 电梯房楼顶施工方案
- 新疆交通职业技术学院《光电成像系统设计》2023-2024学年第二学期期末试卷
- 山东商业职业技术学院《油画半身像》2023-2024学年第二学期期末试卷
- 辽宁体育运动职业技术学院《小型商住空间设计》2023-2024学年第二学期期末试卷
- 江西应用技术职业学院《工程管理与预算》2023-2024学年第二学期期末试卷
- 许昌陶瓷职业学院《商务英语阅读III》2023-2024学年第一学期期末试卷
- 山东药品食品职业学院《金融监管学(双语)》2023-2024学年第二学期期末试卷
- 皖西学院《微视频制作》2023-2024学年第一学期期末试卷
- TSG 81-2022 场(厂)内专用机动车辆安全技术规程
- 型钢悬挑卸料平台施工安全保证措施
- 中国严重脓毒症脓毒性休克治疗指南(2014)规范与实践
- 客户生命周期管理理论分析报告(共17页).ppt
- 设计院管理制度及岗位职责
- 履带式推土机设计
- 公路工程施工监理规范(JTGG10-2006)
- 事业单位同意报考证明
- 音调控制电路课件
- “三会一课”记录表
- 肺癌电子病历
评论
0/150
提交评论