一次函数图像1正比例图像.doc_第1页
一次函数图像1正比例图像.doc_第2页
一次函数图像1正比例图像.doc_第3页
一次函数图像1正比例图像.doc_第4页
一次函数图像1正比例图像.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

小纪汗乡初级中学 八年级上册 数学 导学案课 时 教 案课 题4.3一次函数的图像(一)备课时间2015年10月 日No.第 四单元 第 3课 1课时导 学目 标 一、知识目标1、了解正比例函数y=kx的图象的特点。2、会作正比例函数的图象。3、理解一次函数及其图象的有关性质。4、能熟练地作出一次函数的图象。二、能力目标1、进一步培养学生数形结合的意识和能力。2、通过议一议,培养学生的探索精神和合作交流意识。三、情感目标让学生全身心地投入教学活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。导 学重 点1、正比例函数的图象的特点。2、一次函数的图象的性质。导 学难 点理解一次函数的代数表达式与图象之间的一一对应关系导 学准 备 平面直角坐标系网格板书设计 4.3一次函数的图象(一) 1. 函数的图象2.作函数图象的步骤3.正比例函数的图象是过原点的一条直线导 学 流 程自备空间一、导入新课Ot(分)S(米)801 一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。画正比例函数的图象内容:首先我们来学习什么是函数的图象?把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph)例1 请作出正比例函数y=2x的图象解:列表:x-2-1012y=2x-4-2024描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点连线:把这些点依次连结起来,得到y=2x的图象由例1我们发现:作一个函数的图象需要三个步骤:列表,描点,连线做一做(1)作出正比例函数y=3x的图象(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=3x请同学们以小组为单位,讨论下面的问题,把得出的结论写出来(1)满足关系式y=3x的x,y所对应的点(x,y)都在正比例函数y=3x的图象上吗?(2)正比例函数y=3x的图象上的点(x,y)都满足关系式y=3x吗?(3)正比例函数y=kx的图象有什么特点?明晰由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx议一议1既然我们得出正比例函数y=kx的图象是一条直线那么在画正比例函数图象时有没有什么简单的方法呢?因为“两点确定一条直线 ”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.例2 在同一直角坐标系内作出y=x,y=3x,y=-x,y=-4x的图象解:列表x01y=x01y=3x03y=-x0-y=4x0-4过点(0,0)和(1,1)作直线,则这条直线就是y=x的图象过点(0,0)和(1,3)作直线,则这条直线就是y=3x的图象过点(0,0)和(1,-)作直线,则这条直线就是y=-x的图象过点(0,0)和(1,-4)作直线,则这条直线就是y=-4x的图象议一议2上述四个函数中,随着x的增大,y的值分别如何变化?在正比例函数y=kx中,当k0时,图象在第一、三象限,y的值随着x值的增大而增大(即从左向右观察图象时,直线是向上倾斜的);当k0时, 图象在第二、四象限, y的值随着x值的增大而减小 (即从左向右观察图象时,直线是向下倾斜的).请你进一步思考:(1)正比例函数y=x和y=3x中,随着x值的增大y的值都增加了,其中哪一个增加得更快?你能说明其中的道理吗?(2)正比例函数y=-x和y=-4x中,随着x值的增大y的值都减小了,其中哪一个减小得更快?你是如何判断的?我们发现:越大,直线越靠近y轴。巩固练习,深化理解练习1:在同一直角坐标系中分别作出y=x与y=-x的图象练习2:当时,与的函数解析式为,当时,与的函数解析式为,则在同一直角坐标系中的图象大致为( ) (A) (B) (C ) ( D) 练习3:对于函数的两个确定的值、来说,当时,对应的函数值与 的关系是( )A. B. C. D. 无法确定拓展探究如图所示,你认为下列结论中正确的是( )A. B. C. D. 那么,一个正比例函数对应的图形具有什么特征呢?今天我们就研究正比例函数对应的图形特征-正比例函数图象。导 学 流 程自备空间课堂检测 1.函数y=中,自变量x的取值范围是( )A.x2 B.x2 C.x2 D.x-22下列函数中,y是x的正比例函数的是( ) Ay=2x-1 By= Cy=2x2 Dy=-2x+13.关于函数y=-2x+1,下列结论正确的是( )A.图形必经过点(-2,1) B.图形经过第一、二、三象限C.当x时,y0 D.y随x的增大而增大 4一次函数y=-5x+3的图象经过的象限是( ) A一、二、三 B二、三、四 C一、二、四 D一、三、四5若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( ) Ak3 B0k3 C0k3 D0k3课堂小结 本节课我们通过对正比例函数图象的研究,掌握了以下内容:(1)函数与图象之间是一一对应的关系;(2)正比例函数的图象是一条经过原点的直线(3)作正比例函数图象时,只取原点外的另一个点,就能很快作出作业设计习题4.3 1、2、3、4题,5题选做。错例分析 错题:对于函数的两个确定的值、来说,当时,对应的函数值与 的关系是( )A. B. C. D. 无法确定 分析:要判断y1与y2的大小关系,就要明确函数中k的正负,从而明确函数的增减性。教学反思 这节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图象的对应关系应让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出在得出结论之后,让学生能运用“两点确定一条直线”,很快作出正比例函数的图象在巩固练习活动中,鼓励学生积极思考,提

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论