已阅读5页,还剩72页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十六章 分式161分式16.1.1从分数到分式一、 教学目标1 了解分式、有理式的概念.2理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1重点:理解分式有意义的条件,分式的值为零的条件.2难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1让学生填写P4思考,学生自己依次填出:,.2学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.3. 以上的式子,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x为何值时,分式有意义.分析已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围. 提问如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0?(1) (2) (3) 分析 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的m的解集中的公共部分,就是这类题目的解. 答案 (1)m=0 (2)m=2 (3)m=1六、随堂练习1判断下列各式哪些是整式,哪些是分式?9x+4, , , , ,2. 当x取何值时,下列分式有意义? (1) (2) (3)3. 当x为何值时,分式的值为0?(1) (2) (3) 七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x与y的差于4的商是 .2当x取何值时,分式 无意义?3. 当x为何值时,分式 的值为0?八、答案:六、1.整式:9x+4, , 分式: , ,2(1)x-2 (2)x (3)x2 3(1)x=-7 (2)x=0 (3)x=-1七、118x, ,a+b, ,; 整式:8x, a+b, ; 分式:, 2 X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1理解分式的基本性质. 2会用分式的基本性质将分式变形.二、重点、难点1重点: 理解分式的基本性质.2难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含-号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1请同学们考虑: 与 相等吗? 与 相等吗?为什么?2说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:分析应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3约分:分析 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4通分:分析 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号. , , , , 。分析每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解:= , =,=, = , =。六、随堂练习1填空:(1) = (2) = (3) = (4) =2约分:(1) (2) (3) (4)3通分:(1)和 (2)和 (3)和 (4)和4不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) (2) (3) (4) 七、课后练习1判断下列约分是否正确:(1)= (2)=(3)=02通分:(1)和 (2)和3不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1) (2) 八、答案:六、1(1)2x (2) 4b (3) bn+n (4)x+y 2(1) (2) (3) (4)-2(x-y)23通分:(1)= , = (2)= , = (3)= = (4)= =4(1) (2) (3) (4) 课后反思:162分式的运算1621分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二、重点、难点1重点:会用分式乘除的法则进行运算.2难点:灵活运用分式乘除的法则进行运算 .三、例、习题的意图分析1P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是,大拖拉机的工作效率是小拖拉机的工作效率的倍.引出了分式的乘除法的实际存在的意义,进一步引出P14观察从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a1,因此(a-1)2=a2-2a+1a2-2+1,即(a-1)21,因此(a-1)2=a2-2a+1a2-2+1,即(a-1)2a2-1,可得出“丰收2号”单位面积产量高.六、随堂练习计算(1) (2) (3) (4)-8xy (5) (6) 七、课后练习计算(1) (2) (3) (4) (5) (6) 八、答案:六、(1)ab (2) (3) (4)-20x2 (5)(6)七、(1) (2) (3) (4) (5) (6)课后反思:1621分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算.二、重点、难点1重点:熟练地进行分式乘除法的混合运算.2难点:熟练地进行分式乘除法的混合运算.三、例、习题的意图分析1 P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入计算(1) (2) 五、例题讲解(P17)例4.计算分析 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的. (补充)例.计算 (1) = (先把除法统一成乘法运算)= (判断运算的符号)= (约分到最简分式)(2) = (先把除法统一成乘法运算)= (分子、分母中的多项式分解因式)= =六、随堂练习计算(1) (2)(3) (4)七、课后练习计算(1) (2)(3) (4)八、答案:六.(1) (2) (3) (4)-y七. (1) (2) (3) (4)课后反思:1621分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1重点:熟练地进行分式乘方的运算.2难点:熟练地进行分式乘、除、乘方的混合运算.三、例、习题的意图分析1 P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.2教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点. 四、课堂引入计算下列各题:(1)=( ) (2) =( ) (3)=( ) 提问由以上计算的结果你能推出(n为正整数)的结果吗?五、例题讲解(P17)例5.计算分析第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习1判断下列各式是否成立,并改正.(1)= (2)= (3)= (4)=2计算(1) (2) (3) (4) 5) (6)七、课后练习计算(1) (2) (3) (4) 八、答案:六、1. (1)不成立,= (2)不成立,= (3)不成立,= (4)不成立,=2. (1) (2) (3) (4) (5) (6)七、(1) (2) (3) (4)课后反思:1622分式的加减(一)一、教学目标:(1)熟练地进行同分母的分式加减法的运算. (2)会把异分母的分式通分,转化成同分母的分式相加减.二、重点、难点1重点:熟练地进行异分母的分式加减法的运算.2难点:熟练地进行异分母的分式加减法的运算.三、例、习题的意图分析1 P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2 P19观察是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, , Rn的关系为.若知道这个公式,就比较容易地用含有R1的式子表示R2,列出,下面的计算就是异分母的分式加法的运算了,得到,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲. 四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗?五、例题讲解(P20)例6.计算分析 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)分析 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:=(2)分析 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解:=六、随堂练习计算(1) (2)(3) (4)七、课后练习计算(1) (2) (3) (4) 八、答案:四.(1) (2) (3) (4)1五.(1) (2) (3)1 (4)课后反思:1622分式的加减(二)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.二、重点、难点1重点:熟练地进行分式的混合运算.2难点:熟练地进行分式的混合运算.三、例、习题的意图分析1 P21例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2 P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 四、课堂引入1说出分数混合运算的顺序.2教师指出分数的混合运算与分式的混合运算的顺序相同.五、例题讲解(P21)例8.计算分析 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算(1)分析 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边.解: =(2)分析 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:=六、随堂练习计算(1) (2)(3) 七、课后练习1计算(1) (2) (3) 2计算,并求出当-1的值.八、答案:六、(1)2x (2) (3)3 七、1.(1) (2) (3) 2.,-课后反思:1631可以化为一元一次方程的分式方程(一)一、教学目标:1了解分式方程的概念, 和产生增根的原因.2掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、重点、难点1重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.2难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、例、习题的意图分析1 P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2P32的归纳明确地总结了解分式方程的基本思路和做法.3 P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳出检验增根的方法. 4 P34讨论提出P33的归纳出检验增根的方法的理论根据是什么?5 教材P38习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数. 这种方程的解必须验根.四、课堂引入1回忆一元一次方程的解法,并且解方程2提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程.像这样分母中含未知数的方程叫做分式方程.五、例题讲解(P34)例1.解方程分析找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.(P34)例2.解方程分析找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.六、随堂练习解方程(1) (2)(3) (4)七、课后练习1解方程 (1) (2) (3) (4) 2X为何值时,代数式的值等于2?八、答案:六、(1)x=18 (2)原方程无解 (3)x=1 (4)x=七、1 (1) x=3 (2) x=3 (3)原方程无解 (4)x=1 2. x=课后反思:163.2可化为一元一次方程的分式方程(二)一、教学目标:1会分析题意找出等量关系.2会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1重点:利用分式方程组解决实际问题.2难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米/时,提速前行驶的路程为s千米, 完成. 用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s千米所用的时间,提速后列车的平均速度设为未知数x千米/时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.四、例题讲解P35例3分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1P36例4分析:是一道行程问题的应用题, 基本关系是:速度=.这题用字母表示已知数(量).等量关系是:提速前所用的时间=提速后所用的时间五、随堂练习1. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2. 一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?3. 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.六、课后练习1某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快 ,结果于下午4时到达,求原计划行军的速度。2甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的,求甲、乙两队单独完成各需多少天?3甲容器中有15%的盐水30升,乙容器中有18%的盐水20升,如果向两个容器个加入等量水,使它们的浓度相等,那么加入的水是多少升?七、答案:五、1. 15个,20个 2. 12天 3. 5千米/时,20千米/时 六、1. 10千米/时 2. 4天,6天 3. 20升课后反思:164零整数幂与负整数指数幂,科学记数法一、教学目标:1知道负整数指数幂=(a0,n是正整数).2掌握整数指数幂的运算性质.3会用科学计数法表示小于1的数.二、重点、难点1重点:掌握整数指数幂的运算性质.2难点:会用科学计数法表示小于1的数.三、例、习题的意图分析1 P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.2 P24观察是为了引出同底数的幂的乘法:,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3 P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4 P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.5P25最后一段是介绍会用科学计数法表示小于1的数. 用科学计算法表示小于1的数,运用了负整数指数幂的知识. 用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数.四、课堂引入1回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:(m,n是正整数);(2)幂的乘方:(m,n是正整数);(3)积的乘方:(n是正整数);(4)同底数的幂的除法:( a0,m,n是正整数,mn);(5)商的乘方:(n是正整数);2回忆0指数幂的规定,即当a0时,.3你还记得1纳米=10-9米,即1纳米=米吗?4计算当a0时,=,再假设正整数指数幂的运算性质(a0,m,n是正整数,mn)中的mn这个条件去掉,那么=.于是得到=(a0),就规定负整数指数幂的运算性质:当n是正整数时,=(a0).五、例题讲解(P24)例9.计算分析 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10. 判断下列等式是否正确? 分析 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.分析 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.六、随堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0= (4)20= ( 5)2 -3= ( 6)(-2) -3= 2.计算(1) (x3y-2)2 (2)x2y-2 (x-2y)3 (3)(3x2y-2) 2 (x-2y)3七、课后练习1. 用科学计数法表示下列各数:0000 04, -0. 034, 0.000 000 45, 0. 003 0092.计算(1) (310-8)(4103) (2) (210-3)2(10-3)3八、答案: 六、1.(1)-4 (2)4 (3)1 (4)1(5) (6) 2.(1) (2) (3) 七、1.(1) 410-5 (2) 3.410-2 (3)4.510-7 (4)3.00910-3 2.(1) 1.210-5 (2)4103 课后反思:第17章函数及其图象17、1变量与函数第一课时 变量与函数教学目标 使学生会发现、提出函数的实例,并能分清实例中的常量和变量、自变量与函数,理解函数的定义,能应用方程思想列出实例中的等量关系。教学过程一、由下列问题导入新课 问题l、右图(一)是某日的气温的变化图 看图回答:1这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能否说出这一时刻的气温是多少吗? 2这一天中,最高气温是多少?最低气温是多少? 3这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 从图中我们可以看出,随着时间t(时)的变化,相应的气温T()也随之变化。 问题2 一辆汽车以30千米时的速度行驶,行驶的路程为s千米,行驶的时间为t小时,那么,s与t具有什么关系呢? 问题3 设圆柱的底面直径与高h相等,求圆柱体积V的底面半径R的关系问题4 收音机上的刻度盘的波长和频率分别是用(m)和千赫兹(kHz)为单位标刻的下面是一些对应的数:波长l(m)30050060010001500频率f(kHz)1000600500300200 同学们是否会从表格中找出波长l与频率f的关系呢?二、讲解新课 1常量和变量 在上述两个问题中有几个量?分别指出两个问题中的各个量? 第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化 第2个问题中有路程s,时间t和速度v,这三个量中s和t可以取不同的数值是变量,而速度30千米/时,是保持不变的量是常量路程随着时间的变化而变化。 第3个问题中的体积V和R是变量,而是常量,体积随着底面半径的变化而变化 第4个问题中的l与频率f是变量而它们的积等于300000,是常量 常量:在某一变化过程中始终保持不变的量,称为常量 变量:在某一变化过程中可以取不同数值的量叫做变量 2函数的概念 上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如:在上述的第1个问题中,一天内任意选择一个时刻,都有惟一的温度与之对应,t是自变量,T因变量(T是t的函数) 在上述的2个问题中,s30t,给出变量t的一个值,就可以得到变量s惟一值与之对应,t是自变量,s因变量(s是t的函数)。 在上述的第3个问题中,V2R2,给出变量R的一个值,就可以得到变量V惟一值与之对应,R是变量,V因变量(V是R的函数) 在上述的第4个问题中,lf300000,即l,给出一个f的值,就可以得到变量l惟一值与之对应,f是自变量,l因变量(l是f的函数)。函数的概念:如果在个变化过程中;有两个变量,假设X与Y,对于X的每一个值,Y都有惟一的值与它对应,那么就说X是自变量,Y是因变量,此时也称 Y是X的函数 要引导学生在以下几个方面加对于函数概念的理解 变化过程中有两个变量,不研究多个变量;对于X的每一个值,Y都有唯一的值与它对应,如果Y有两个值与它对应,那么Y就不是X的函数。例如y2x 3表示函数的方法 (1)解析法,如问题2、问题3、问题4中的s30t、V=2 R3、l,这些表达式称为函数的关系式, (2)列表法,如问题4中的波长与频率关系表;(3)图象法,如问题l中的气温与时间的曲线图三、例题讲解例1用总长60m的篱笆围成矩形场地,求矩形面积S(m2)与边l(m)之间的关系式,并指出式中的常量与变量,自变量与函数。例2下列关系式中,哪些式中的y是x的函数?为什么?(1)y3x2 (2)y2x (3)y3x2x5四、课堂练习课本第26页练习的第1、2,3题, 五、课堂小结关于函数的定义的理解应注意两个方面,其一是变化过程中有且只有两个变量,其二是对于其中一个变量的每一个值,另一个变量都有惟一的值与它对应对于实际问题,同学们应该能够根据题意写出两个变量的关系,即列出函数关系式。六、作业 课本第28页习题18.1第1、2题。七、教后记第二课时 变量与函数教学目标使学生进一步理解函数的定义,熟练地列出实际问题的函数关系式,理解自变量取值范围的含义,能求函数关系式中自变量的取值范围。教学过程 一、复习1填写如右图(一)所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向加数用y表示,试写出y关于x的函数关系式。2如图(二),请写出等腰三角形的顶角y与底角x之间的函数关系式 3如图(三),等腰直角三角形ABC边长与正方形MNPQ的边长均为l0cm,AC与MN在同一直线上,开始时A点与M点重合,让ABC向右运动,最后A点与N点重合。试写出重叠部分面积y与长度x之间的函数关系式二、求函数自变量的取值范围 1实际问题中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。 从右边的分析可以看出,第n排的 排数 座位数 座位 l 18一方面可以用18(n1)表 21813182 示,另一方面可以用m表示,所以 m18(n1) n 18(n1)n的取值怎么限制呢?显然这个n也应该取正整数,所以n取1n30的整数或0n31的整数。请同学们试着写出上面第2、3两个问题中自变量的取值范围。 2用数学式子表示的函数的自变量取值范围例1求下列函数中自变量x的取值范围 (1)y=3xl (2)y2x27 (3)y= (4)y= 分析:用数学表示的函数,一般来说,自变量的取值范围是使式子有意义的值,对于上述的第(1)(2)两题,x取任意实数,这两个式子都有意义,而对于第(3)题,(x2)必须不等于0式子才有意义,对于第(4)题,(x2)必须是非负数式子才有意义 3函数值 例2在上面的练习(3)中,当MA1cm时,重叠部分的面积是多少?请同学们求一求在例1中当x=5时各个函数的函数值三、课堂练习课本第28页练习的第1、2、3题四、小结通过本节课的学习,一方面,我们进一步认识了如何列函数关系式,对于几何问题中列函数关系式比较困难,有的题目的自变量的取值范围也很难确定,只有通过一定量的练习才能做到熟练地解决这个问题;另一方面,对于用数学式子表示的函数关系式的自变量的取值范围,考虑两个方面,其一是分母不能等于0,其二是开偶次方的被开方数是非负数五、作业课本第29页的第3、4、5、6题六、教后记17、2函数的图象17.2.1平面直角坐标系第一课时 平面直角坐标系教学目标 使学生了解直角坐标系的由来,能够正确画出直角坐标系,通过具体的事例说明在平面上的点应该用一对有序实数来表示,反过来,每一对有序实数都可以在坐标平面上描出一点。教学过程 同学们是否想到你们坐的位置可以用数来表示呢?如果从门口算起依次是第1列,第2列、第8列,从讲台往下数依次是第l行、第2行、第7行,那么同学的位置就能用一对有序实数来表示。 1分别请一些同学说出自己的位置 例如,同学是第3排第5列,那么(3,5)就代表了这位同学的位置。 2再请一些同学在黑板上描出自己的位置,例如右图中的黑点就是这些同学的位置 3显然,(3,5)和(5,3)所代表的位置不相同,所以同学们可以体会为什么一定要有序实数对才能确定点在平面上的位置。问题:请同学们想一想,在我们生活还有应用有序实数对确定位置的吗?二、关于笛卡儿的故事 直角坐标系,通常称为笛卡儿直角坐标系,它是以法国哲学家,数学家和自然科学家笛卡儿的名字命名的。介绍笛卡儿。三、建立直角坐标系 为了用一对实数表示平面内地点,在平面内画两条互相垂直的数轴,组成平面直角坐标系,水平的轴叫做轴或横轴,取向右为正方向,铅直的数轴叫做轴或纵轴,取向上为正方向,两轴的交点是原点,这个平面叫做坐标平面 在平面直角坐标系中,任意一点都可以用对有序实数来表示如右图中的点 P,从点P分别向x轴和y轴作垂线,垂足分别为M和N这时,点P在x轴对应的数2,称为点P的横坐标;点P在y轴上对应的数为3,称为P点的纵坐标依次写出点P的横坐标和纵坐标,得到一对有序实数(2,3),称为点P的坐标,这时点户可记作P(2,3)。建立了平面直角坐标系后,两条坐标轴把平面分四个区域,分别称为第一、二、三、四象限,坐标轴不属于任何一个象限四、课堂练习 1请同学们在直角坐标系中描出以下各点,并用线依次把这些点连起来,看看是什么图案 (4,5)、(3,1)、(2,2)、(0,3)、(2,2)、(3,1)、(4,5)、(0,6)2写出右图直角坐标系中A、B、C、D、E、F、O各点的坐标3课本第32页的第3、4题 五、小结本节课我们认识了平面直角坐标系,通过上面的讲解和练习可以知道,平面上的点都可以用有序实数来表示,也必须用有序实数表示;反过来,任何一对有序实数都可以在坐标平面上描出一点,所以,在平面直角坐标系中的点和有序实数对是成一一对应的关系。 六、作业课本第37页习题182的第1、2、3题七、教后记第二课时 平面直角坐标系教学目标使学生进一步理解平面直角坐标系上的点与有序实数对是一一对应关系掌握关于x轴y轴和原点对称的点的坐标的求法,明确点在x轴、y轴上坐标的特点,能运用这些知识解决问题,培养学生探索问题的能力教学过程一、复习 在直角坐标系中分别描出以下各点:1、 A(3,2)、B(3,2)、C(3,2)、D(3,2)2、分别写出点P、Q、R、S、M、N的坐标。 3、写出点E、F的坐标。二、探索与思考 通过以上练习,鼓励同学们自己提出问题,进而得出结论。若没有办法,可以通过以下思考题给予启发。 1在四个象限内的点的横、纵坐标的符号是怎样的? 2两条坐标轴上的点的坐标有什么特点? 3若点在第一、三象限角平分线上或者在第二、四象限角平分线上,它的横、纵坐标有什么特点? 4关于x轴、y轴原点对称的点的横纵坐标具有什么关系? 通过对照以上图形讲解,启发学生得到如下结论: 第一象限(,),第二象限(,)第三象限(、)第四象限(,); x轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x轴上,y轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y轴上, 若点在第一、三象限角平分线上,它的横坐标等于纵坐标,若点在第二,四象限角平分线上,它的横坐标与纵坐标互为相反数;若两个点关于x轴对称,横坐标相等,纵坐标互为相反数;若两个点关于y轴对称,纵坐标相等,横坐标互为相反数;若两个点关于原点对称,横坐标、纵坐标都是互为相反数。三、例题讲解 例1,如果A(1a,b1)在第三象限,那么点B(a,b)在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 分析:若要判断点在第几象限,关键是看横纵坐标的符号,从这题来看,就是要判断a、b的符号。四、课堂练习 1求点A(2,3)关于x轴对称y轴对称、原点对称的坐标; 2若A(a2,3)和A1(1,2b2)关于原点对称,求a、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水产苗种病害防治措施
- 消防安全演练操作规程
- 港口维护脚手架租赁协议
- 展厅装修合同模板
- 赔偿协议书范本自愿赔偿
- 商务酒店无障碍设施建设指南
- 教育培训管理创新策略
- 建筑工程加固新施工合同范本
- 冷冻食品库房虫害防治策略
- 旅游公司客户隐私保密规则
- 2024年2024年离婚协议书模板电子版
- DB23T 3834-2024 安全生产培训机构管理指南
- 2024-2025学年二年级上册语文第四单元测试卷(统编版)
- 2024春期国开电大本科《公共政策概论》在线形考(形考任务1至4)试题及答案
- (正式版)SHT 3551-2024 石油化工仪表工程施工及验收规范
- 粤教版科学四年级上册全册试卷(含答案)
- 个体诊所药品清单
- 2022年冀教版六年级上册英语期末试卷及答案
- 安全游玩动物园PPT课件
- 有机肥PPT课件
- 电除尘拆除施工方案
评论
0/150
提交评论