2017届中考数学试题分项版解析汇编第05期专题16压轴题含解析.docx_第1页
2017届中考数学试题分项版解析汇编第05期专题16压轴题含解析.docx_第2页
2017届中考数学试题分项版解析汇编第05期专题16压轴题含解析.docx_第3页
2017届中考数学试题分项版解析汇编第05期专题16压轴题含解析.docx_第4页
2017届中考数学试题分项版解析汇编第05期专题16压轴题含解析.docx_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题16 压轴题一、选择题1(2017年湖北省十堰市第10题)如图,直线y= x6分别交x轴,y轴于A,B,M是反比例函数y=(x0)的图象上位于直线上方的一点,MCx轴交AB于C,MDMC交AB于D,ACBD=4,则k的值为()A3B4C5D6【答案】A.【解析】xy=3,M在反比例函数的图象上,k=xy=3,故选(A)考点:反比例函数与一次函数的综合.2(2017年贵州省黔东南州第9题)如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,给出下列结论:b2=4ac;abc0;ac;4a2b+c0,其中正确的个数有()A1个B2个C3个D4个【答案】C【解析】考点:二次函数图象与系数的关系 3. (2017年湖北省荆州市第10题)规定:如果关于x的一元二次方程有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:方程是倍根方程;若关于x的方程是倍根方程,则a=3;若关于x的方程是倍根方程,则抛物线与x轴的公共点的坐标是(2,0)和(4,0);若点(m,n)在反比例函数的图象上,则关于x的方程是倍根方程上述结论中正确的有( )A. B. C. D.【答案】C【解析】关于x的方程ax26ax+c=0(a0)是倍根方程,x2=2x1,抛物线y=ax26ax+c的对称轴是直线x=3,抛物线y=ax26ax+c与x轴的交点的坐标是(2,0)和(4,0),故正确;点(m,n)在反比例函数的图象上,mn=4,解mx2+5x+n=0得x1=,x2=,x2=4x1,关于x的方程mx2+5x+n=0不是倍根方程;故选:C考点:1、反比例函数图象上点的坐标特征;2、根的判别式;3、根与系数的关系;4、抛物线与x轴的交点 4. (2017年山东省泰安市第20题)如图,在中, , ,点从点沿向点以的速度运动,同时点从点沿向点以的速度运动(点运动到点停止),在运动过程中,四边形的面积最小值为()A B C. D 【答案】C考点:二次函数的最值5. (2017年山东省威海市第11题)已知二次函数的图象如图所示,则正比例函6570与反比例函数在同一坐标系中的大致图象是( ) ABCD【答案】C考点:1、二次函数图象的性质,2、一次函数的图象的性质,3、反比例函数图象的性质6. (2017年山东省威海市第12题)如图,正方形的边长为5,点的坐标为,点在轴上,若反比例函数()的图象过点,则该反比例函数的表达式为( )A B C. D【答案】A【解析】试题分析:过点C作CEy轴于E,根据正方形的性质可得AB=BC,ABC=90,再根据同角的余角相等求出OAB=CBE,然后利用“角角边”证明ABOBCE,根据全等三角形对应边相等可得OA=BE=4,CE=OB=3,再求出OE=1,然后写出点C的坐标(3,1),再把点C的坐标代入反比例函数解析式计算即可求出k =xy=31=3,得到反比例函数的表达式为故选:A考点:1、反比例函数图象上点的坐标特点,2、正方形的性质,3、全等三角形的判定与性质 二、填空题1(2017年湖北省十堰市第16题)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N下列结论:AFBG;BN=NF;S四边形CGNF=S四边形ANGD其中正确的结论的序号是【答案】.四边形ABCD为正方形,AB=BC=CD,BE=EF=FC,CG=2GD,BF=CG,在ABF和BCG中,ABFBCG,BAF=CBG,BAF+BFA=90,CBG+BFA=90,即AFBG;正确;在BNF和BCG中,BNFBCG,,BN=NF;错误;作EHAF,令AB=3,则BF=2,BE=EF=CF=1,AF=,连接AG,FG,根据中结论,则NG=BGBN=,S四边形CGNF=SCFG+SGNF=CGCF+NFNG=1+,S四边形ANGD=SANG+SADG=ANGN+ADDG=,S四边形CGNFS四边形ANGD,错误;故答案为 考点:全等三角形的判定和性质,相似三角形的判定和性质. 三、解答题1(2017年贵州省毕节地区第24题)如图,在ABCD中 过点A作AEDC,垂足为E,连接BE,F为BE上一点,且AFE=D(1)求证:ABFBEC;(2)若AD=5,AB=8,sinD=,求AF的长【答案】(1)证明见解析;(2). AF=2 .【解析】考点:相似三角形的判定与性质;平行四边形的性质;解直角三角形2(2017年贵州省毕节地区第27题)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(1,0),B(4,0),C(0,4)三点,点P是直线BC下方抛物线上一动点(1)求这个二次函数的解析式;(2)是否存在点P,使POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,PBC面积最大,求出此时P点坐标和PBC的最大面积【答案】(1)抛物线解析式为y=x23x4;(2)存在满足条件的P点,其坐标为( ,2)(3)P点坐标为(2,6)时,PBC的最大面积为8【解析】试题解析:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,抛物线解析式为y=x23x4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,PO=PD,此时P点即为满足条件的点,C(0,4),D(0,2),P点纵坐标为2,代入抛物线解析式可得x23x4=2,解得x=(小于0,舍去)或x=,存在满足条件的P点,其坐标为(,2);考点:二次函数综合题 3(2017年湖北省十堰市第25题)抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C(1)若m=3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使SACE= SACD,求点E的坐标;(3)如图2,设F(1,4),FGy于G,在线段OG上是否存在点P,使OBP=FPG?若存在,求m的取值范围;若不存在,请说明理由【答案】(1)抛物线的解析式为:y=x2+2x3=(x+1)24;对称轴是:直线x=1;(2)点E的坐标为E(4,5)(3)当4m0或m=3时,在线段OG上存在点P,使OBP=FPG.【解析】试题解析:(1)当m=3时,B(3,0),把A(1,0),B(3,0)代入到抛物线y=x2+bx+c中得:,解得,抛物线的解析式为:y=x2+2x3=(x+1)24;对称轴是:直线x=1;(2)如图1,设E(m,m2+2m3),由题意得:AD=1+1=2,OC=3,SACE=SACD=ADOC=23=10,设直线AE的解析式为:y=kx+b,把A(1,0)和E(m,m2+2m3)代入得, ,解得:,直线AE的解析式为:y=(m+3)xm3,F(0,m3),C(0,3),FC=m3+3=m,SACE=FC(1m)=10,m(1m)=20,m2m20=0,(m+4)(m5)=0,m1=4,m2=5(舍),E(4,5);考点:二次函数的综合题.4(2017年贵州省黔东南州第24题)如图,M的圆心M(1,2),M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(4,0)(1)求抛物线的解析式;(2)求证:直线l是M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PFy轴,交直线l于点F,是否存在这样的点P,使PEF的面积最小?若存在,请求出此时点P的坐标及PEF面积的最小值;若不存在,请说明理由【答案】(1)y=x2x+(2)证明见解析(3) 【解析】试题解析:(1)设抛物线的解析式为y=a(x2)(x+4),将点M的坐标代入得:9a=2,解得:a=抛物线的解析式为y=x2x+(2)连接AM,过点M作MGAD,垂足为G把x=0代入y=x+4得:y=4,A(0,4)将y=0代入得:0=x+4,解得x=8,B(8,0)OA=4,OB=8M(1,2),A(0,4),MG=1,AG=2tanMAG=tanABO=MAG=ABOOAB+ABO=90,MAG+OAB=90,即MAB=90l是M的切线考点:二次函数综合题 5. (2017年湖北省荆州市第25题)(本题满分12分)如图在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作Q.(1)求证:直线AB是Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M,若CM与Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与Q同时相切,若存在,请直接写出此时点C的坐标,若不存在,请说明理由.【答案】(1)证明见解析(2)m=4t 或m=4t(3)存在,(,0)或(,0)或(,0)或(,0)【解析】试题分析:(1)只要证明PAQBAO,即可推出APQ=AOB=90,推出QPAB,推出AB是O的切线;(2)分两种情形求解即可:如图2中,当直线CM在O的左侧与Q相切时,设切点为D,则四边形PQDM是正方形如图3中,当直线CM在O的右侧与Q相切时,设切点为D,则四边形PQDM是正方形分别列出方程即可解决问题(2)如图2中,当直线CM在O的左侧与Q相切时,设切点为D,则四边形PQDM是正方形易知PQ=DQ=3t,CQ=3t=,OC+CQ+AQ=4,m+t+5t=4,m=4t(3)存在理由如下:如图4中,当Q在y则的右侧与y轴相切时,3t+5t=4,t= ,由(2)可知,m=或如图5中,当Q在y则的左侧与y轴相切时,5t3t=4,t=2,由(2)可知,m=或综上所述,满足条件的点C的坐标为(,0)或(,0)或(,0)或(,0)考点:一次函数综合题 6. (2017年湖北省宜昌市第23题) 正方形的边长为1,点是边上的一个动点(与不重合),以为顶点在所在直线的上方作.(1)当经过点时,请直接填空: (可能,不可能)过点;(图1仅供分析)如图2,在上截取,过点作垂直于直线,垂足为点,册于,求证:四边形为正方形.(2)当不过点时,设交边于,且.在上存在点,过点作垂直于直线,垂足为点,使得,连接,求四边形的最大面积. 【答案】(1)不可能证明见解析(2) 【解析】试题分析:(1)若ON过点D时,则在OAD中不满足勾股定理,可知不可能过D点;由条件可先判业四边形EFCH为矩形,再证明OFEABO,可证得结论;EHCD,EFBC,EHC=EFC=90,且HCF=90,四边形EFCH为矩形,MON=90,EOF=90AOB,在正方形ABCD中,BAO=90AOB,EOF=BAO,在OFE和ABO中 OFEABO(AAS),EF=OB,OF=AB,又OF=CF+OC=AB=BC=BO+OC=EF+OC,CF=EF,四边形EFCH为正方形;(2)POK=OGB,PKO=OBG,PKOOBG,SPKO=4SOBG,=()2=4,OP=2,SPOG=OGOP=12=1,考点:1、矩形的判定和性质,2、全等三角形的判定和性质,3、相似三角形的判定和性质,4、三角形的面积,5、二次函数的性质,6、方程思想7. (2017年湖北省宜昌市第24题)已知抛物线,其中,且.(1)直接写出关于的一元二次方程的一个根;(2)证明:抛物线的顶点在第三象限;(3)直线与轴分别相交于两点,与抛物线相交于两点.设抛物线的对称轴与轴相交于,如果在对称轴左侧的抛物线上存在点,使得与相似.并且,求此时抛物线的表达式.【答案】(1)x=1(2)证明见解析(3)y=x2+2x3【解析】(2)证明:2a=b,对称轴x=1,把b=2a代入a+b+c=0中得:c=3a,a0,c0,=b24ac0,0,则顶点A(1,)在第三象限;(3)由b=2a,c=3a,得到x=,解得:x1=3,x2=1,联立得:,解得:或,这里(1,4a)为顶点A,(1,4a)为点D坐标,点D到对称轴x=1的距离为1(1)=,AE=|4a|=4a,SADE=4a=2,即它的面积为定值,这时等腰直角ADF的面积为1,底边DF=2,而x=1是它的对称轴,此时D、C重合且在y轴上,由1=0,解得:a=1,此时抛物线解析式为y=x2+2x3考点:1、二次函数的图象与性质,2、二次函数与一次函数的关系,3、待定系数法求函数解析式8(2017年江西省第22题)已知抛物线C1:y=ax24ax5(a0)(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值【答案】(1)(1,0)或(5,0)(2)(0,5),(4,5)y=ax2+4ax5(3)a=或【解析】(2)抛物线C1解析式为:y=ax24ax5,整理得:y=ax(x4)5;当ax(x4)=0时,y恒定为5;抛物线C1一定经过两个定点(0,5),(4,5);这两个点连线为y=5;将抛物线C1沿y=5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;抛物线C2解析式为:y=ax2+4ax5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者2;当y=2时,2=4a+8a5,解得,a=;当y=2时,2=4a+8a5,解得,a=;a=或;考点:1、抛物线与x轴的交点;2、二次函数图象与几何变换 9. (2017年内蒙古通辽市第26题)在平面直角坐标系中,抛物线过点,与轴交于点.(1)求抛物线的函数表达式;(2)若点在抛物线的对称轴上,求的周长的最小值;(3)在抛物线的对称轴上是否存在点,使是直角三角形?若存在,直接写出点的坐标,若不存在,请说明理由.【答案】(1)y=x2+x+2(2)ACD的周长的最小值是2+2(3)存在,点P的坐标为(1,1)或(1,3)【解析】的坐标试题解析:(1)把点A(2,0),B(2,2)代入抛物线y=ax2+bx+2中, ,解得: ,抛物线函数表达式为:y=x2+x+2;(3)存在,分两种情况: 当CAP=90时,ACP是直角三角形,如图3,考点:二次函数综合题 10(2017年山东省东营市第25题)如图,直线y=x+分别与x轴、y轴交于B、C两点,点A在x轴上,ACB=90,抛物线y=ax2+bx+经过A,B两点(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MHBC于点H,作MDy轴交BC于点D,求DMH周长的最大值【答案】(1)(1,0)(2)y=x2+x+ (3) 【解析】试题解析: (1)直线y=x+分别与x轴、y轴交于B、C两点,B(3,0),C(0,),OB=3,OC=,tanBCO=,BCO=60,ACB=90,ACO=30,=tan30=,即=,解得AO=1,A(1,0);(2)抛物线y=ax2+bx+经过A,B两点, ,解得 ,抛物线解析式为y=x2+x+;考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想 11. (2017年山东省泰安市第25题)如图,在平面直角坐标系中,的斜边在轴的正半轴上,且,反比例函数的图象经过点(1)求反比例函数的表达式;(2)若与关于直线对称,一次函数的图象过点,求一次函数的表达式【答案】(1)y=(2)y=x【解析】考点:1、反比例函数图象上点的坐标特征;2、一次函数图象上点的坐标特征;3、解直角三角形12. (2017年山东省泰安市第29题)如图,四边形是平行四边形,是的中点,是延长线上一点(1)若,求证:;(2)在(1)的条件下,若的延长线与交于点,试判定四边形是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若,与垂直吗?若垂直给出证明,若不垂直说明理由【答案】(1)证明见解析(2)四边形ACPE为平行四边形(3)垂直【解析】(3)垂直,理由:过E作EMDA交DA的延长线于M,过E作ENFC交FC的延长线于N,在AME与CNE中, ,AMECNE,ADE=CFE,在ADE与CFE中, ,ADECFE,DEA=FEC,DEA+DEC=90,CEF+DEC=90,DEF=90,EDEF考点:四边形综合题 13. (2017年山东省威海市第25题)如图,已知抛物线过点,.点为抛物线上的动点,过点作轴,交直线于点,交轴于点.(1)求二次函数的表达式;(2)过点作轴,垂足为点.若四边形为正方形(此处限定点在对称轴的右侧),求该正方形的面积;(3)若,求点的横坐标.【答案】(1)y=x2+2x+3(2)24+8或248(3)点M的横坐标为、2、1、【解析】(2)由(1)知,抛物线的对称轴为x=1,如图1,设点M坐标为(m,m2+2m+3),ME=|m2+2m+3|,M、N关于x=1对称,且点M在对称轴右侧,点N的横坐标为2m,MN=2m2,四边形MNFE为正方形,ME=MN,|m2+2m+3|=2m2,分两种情况:当m2+2m+3=2m2时,解得:m1=、m2=(不符合题意,舍去),当m=时,正方形的面积为(22)2=248;当m2+2m+3=22m时,解得:m3=2+,m4=2(不符合题意,舍去),当m=2+时,正方形的面积为2(2+)22=24+8;综上所述,正方形的面积为24+8或248(3)设BC所在直线解析式为y=kx+b,把点B(3,0)、C(0,3)代入表达式,得: ,解得: ,直线BC的函数表达式为y=x+3,考点:二次函数的综合14. (2017年山东省潍坊市第25题)(本题满分13分)如图1,抛物线经过平行四边形的顶点、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式;(2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=x2+2x+3;(2)当t=时,PEF的面积最大,其最大值为,最大值的立方根为= ;(3)存在满足条件的点P,t的值为1或 【解析】抛物线解析式为y=x2+2x+3;(2)A(0,3),D(2,3),BC=AD=2,B(1,0),C(1,0),线段AC的中点为(,),直线l将平行四边形ABCD分割为面积相等两部分,直线l过平行四边形的对称中心,A、D关于对称轴对称,抛物线对称轴为x=1,E(3,0),P点横坐标为t,P(t,t2+2t+3),M(t,t+),PM=t2+2t+3(t+)=t2+t+,SPEF=SPFM+SPEM=PMFN+PMEH=PM(FN+EH)=(t2+t+)(3+)=(t)+,当t=时,PEF的面积最大,其最大值为,最大值的立方根为=;则PK=t2+2t+3,AQ=t,KE=3t,PQ=t2+2t+33=t2+2t,APQ+KPE=APQ+PAQ=90,PAQ=KPE,且PKE=PQA,PKEAQP,即,即t2t1=0,解得t=或t=(舍去),综上可知存在满足条件的点P,t的值为1或考点:二次函数综合题 15. (2017年湖南省郴州市第25题)如图,已知抛物线与轴交于两点,与轴交于点,且,直线与轴交于点,点是抛物线上的一动点,过点作轴,垂足为,交直线于点.(1)试求该抛物线的表达式;(2)如图(1),若点在第三象限,四边形是平行四边形,求点的坐标;(3)如图(2),过点作轴,垂足为,连接, 求证:是直角三角形;试问当点横坐标为何值时,使得以点为顶点的三角形与相似?【答案】(1)y=x2+x4;(2)点P的坐标为(,)或(8,4);(3)详见解析;,点P的横坐标为5.5或10.5或2或18时,使得以点P、C、H为顶点的三角形与ACD相似【解析】试题解析:(3)证明:把y=0代入y=x4得:x4=0,解得:x=8D(8,0)OD=8A(2,0),C(0,4),AD=2(8)=10由两点间的距离公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,AC2+CD2=AD2ACD是直角三角形,且ACD=90由得ACD=90当ACDCHP时,即 或,解得:n=0(舍去)或n=5.5或n=10.5当ACDPHC时,即或解得:n=0(舍去)或n=2或n=18综上所述,点P的横坐标为5.5或10.5或2或18时,使得以点P、C、H为顶点的三角形与ACD相似考点:二次函数综合题. 16(2017年四川省内江市第27题)如图,在O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE(1)求证:AC2=AEAB;(2)过点B作O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;(3)设O半径为4,点N为OC中点,点Q在O上,求线段PQ的最小值【答案】(1)证明见解析;(2)PB=PE;(3)【解析】(2)PB=PE,理由是:如图2,连接OB,PB为O的切线,OBPB,OBP=90,PBN+OBN=90,OBN+COB=90,PBN=COB,PEB=A+ACE=2A,COB=2A,PEB=COB,PEB=PBN,PB=PE;考点:圆的综合题;最值问题;探究型;压轴题 17(2017年四川省内江市第28题)如图,在平面直角坐标系中,抛物线(a0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使MBN为直角三角形?若存在,求出t值;若不存在,请说明理由【答案】(1);(2)S=,运动1秒使PBQ的面积最大,最大面积是;(3)t=或t=【解析】(2)设运动时间为t秒,则AM=3t,BN=t,MB=63t由题意得,点C的坐标为(0,3)在RtBOC中,BC=5如图1,过点N作NHAB于点H,NHCO,BHNBOC,即,HN=t,SMBN=MBHN=(63t)t,即S= =,当PBQ存在时,0t2,当t=1时,SPBQ最大=答:运动1秒使PBQ的面积最大,最大面积是;(3)如图2,在RtOBC中,cosB=考点:二次函数综合题;最值问题;二次函数的最值;动点型;存在型;分类讨论;压轴题 18. (2017年辽宁省沈阳市第25题)如图1,在平面直角坐标系中,是坐标原点,抛物线与轴正半轴交于点,与轴交于点,连接,点分别是的中点.,且始终保持边经过点,边经过点,边与轴交于点,边与轴交于点.(1)填空,的长是 ,的度数是 度(2)如图2,当,连接求证:四边形是平行四边形;判断点是否在抛物线的对称轴上,并说明理由;(3)如图3,当边经过点时(此时点与点重合),过点作,交延长线上于点,延长到点,使,过点作,在上取一点,使得(若在直线的同侧),连接,请直接写出的长.【答案】(1)8,30;(2)详见解析;点D在该抛物线的对称轴上,理由详见解析;(3)12 .【解析】试题解析:(1)8,30;(2)证明:,,又OM=AM,OH=BH,又BN=AN四边形AMHN是平行四边形 (3)12 .考点:二次函数综合题. 19(2017年山东省日照市第22题)如图所示,在平面直角坐标系中,C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点已知抛物线开口向上,与C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8SQAB,且QABOBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由【答案】(1) CD=, P(2,1);(2) y=x24x+3;(3) 存在满足条件的点Q,其坐标为(2,1)【解析】试题解析:(1)如图,连接OC,M(4,0),N(0,3),OM=4,ON=3,MN=5,OC=MN=,CD为抛物线对称轴,OD=MD=2,在RtOCD中,由勾股定理可得CD=,PD=PCCD=1,P(2,1);(3)在y=x24x+3中,令y=0可得0=x24x+3,解得x=1或x=3,A(1,0),B(3,0),AB=31=2,ON=3,OM=4,PD=1,S四边形OPMN=SOMP+SOMN=OMPD+OMON=41+43=8=8SQAB,SQAB=1,考点:二次函数综合题 20. (2017年湖南省岳阳市第24题)(本题满分10分)如图,抛物线经过点,直线交轴于点,且与抛物线交于,两点为抛物线上一动点(不与,重合)(1)求抛物线的解析式;(2)当点在直线下方时,过点作轴交于点,轴交于点求的最大值;(3)设为直线上的点,以,为顶点的四边形能否构成平行四边形?若能,求出点的坐标;若不能,请说明理由【答案】(1)抛物线的解析式为:y=x2-x-2;(2);(3)能,(1,0)【解析】试题解析:(1)把B(3,0),C(0,-2)代入y=x2+bx+c得,抛物线的解析式为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论