已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3课时导数与函数的综合问题(对应学生用书第40页)利用导数研究不等式的有关问题角度1证明不等式(2017全国卷)已知函数f(x)ln xax2(2a1)x.(1)讨论f(x)的单调性;(2)当a0,故f(x)在(0,)上单调递增若a0;当x时,f(x)0.故f(x)在上单调递增,在上单调递减(2)证明:由(1)知,当a0;当x(1,)时,g(x)0时,g(x)0.从而当a0时,ln10,即f(x)2.角度2解决不等式恒(能)成立问题(2018广州综合测试(二)已知函数f(x)axb在点(e,f(e)处的切线方程为yax2e.(1)求实数b的值;(2)若存在xe,e2,满足f(x)e,求实数a的取值范围. 【导学号:79140086】解(1)函数f(x)的定义域为(0,1)(1,)因为f(x)axb,所以f(x)a.所以函数f(x)在点(e,f(e)处的切线方程为y(eaeb)a(xe),即yaxeb.已知函数f(x)在点(e,f(e)处的切线方程为yax2e,比较可得be.所以实数b的值为e.(2)f(x)e,即axee,所以问题转化为a在e,e2上有解令h(x)(xe,e2),则h(x).令p(x)ln x2,所以当xe,e2时,有p(x)0.所以函数p(x)在区间e,e2上单调递减所以p(x)p(e)ln e20.所以h(x)0,即h(x)在区间e,e2上单调递减所以h(x)h(e2).所以实数a的取值范围为.规律方法1.利用导数证明含“x”不等式方法,证明:f(x)g(x).法一:移项,f(x)g(x)0,构造函数F(x)f(x)g(x),转化证明F(x)min0,利用导数研究F(x)单调性,用上定义域的端点值.法二:转化证明:f(x)ming(x)max.法三:先对所求证不等式进行变形,分组或整合,再用法一或法二.2.利用导数解决不等式的恒成立问题的策略(1)首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.(2)也可分离变量,构造函数,直接把问题转化为函数的最值问题.3.“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)g(a)对于xD恒成立,应求f(x)的最小值;若存在xD,使得f(x)g(a)成立,应求f(x)的最大值.应特别关注等号是否成立问题.跟踪训练(2018东北三省三校二联)已知函数f(x)sin x.(1)当x0时,证明:f(x)1;(2)若当x时,f(x)ax恒成立,求实数a的取值范围解(1)证明:设g(x)f(x)cos x(x0),则g(x)sin xx(x0)令M(x)g(x)(x0),则M(x)1cos x0,g(x)在(0,)上单调递增g(x)g(0)0.g(x)在(0,)上单调递增g(x)g(0)0.f(x)1成立(2)当x时,f(x)axsin xtan xax.设h(x)sin xtan xax,则h(x)cos xa.令tcos x,由0x,得0t1.设k(t)t(0t1),则k(t)10.k(t)在(0,1)上单调递减k(t)k(1)2.当a2时,h(x)0,h(x)在上单调递增h(x)h(0)0,即原不等式成立当a2时,关于t的方程ta在(0,1)仅有一根,设根为t0,设cos mt0,0m,则存在唯一m,使得cos mt0.当x(0,m)时,t0cos x1h(x)0,h(x)在(0,m)上单调递减h(x)h(0)0,这与条件矛盾,a2时不成立综上所述,a2,即实数a的取值范围为(,2利用导数研究函数零点、方程的根、极值个数问题(2016北京高考节选)设函数f(x)x3ax2bxc.(1)求曲线yf(x)在点(0,f(0)处的切线方程;(2)设ab4,若函数f(x)有三个不同零点,求c的取值范围解(1)由f(x)x3ax2bxc,得f(x)3x22axb.因为f(0)c,f(0)b,所以曲线yf(x)在点(0,f(0)处的切线方程为ybxc.(2)当ab4时,f(x)x34x24xc,所以f(x)3x28x4.令f(x)0,得3x28x40,解得x2或x.当x变化时,f(x)与f(x)的变化情况如下:x(,2)2f(x)00f(x)cc所以,当c0且c0,存在x1(4,2),x2,x3,使得f(x1)f(x2)f(x3)0.由f(x)的单调性知,当且仅当c时,函数f(x)x34x24xc有三个不同零点规律方法利用导数研究方程根的方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图像的走势规律,标明函数极(最)值的位置.(3)可以通过数形结合的思想去分析问题,使问题的求解有一个清晰、直观的整体展现.跟踪训练设函数f(x)kln x,k0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,上仅有一个零点. 【导学号:79140087】解(1)由f(x)kln x(k0),得x0且f(x)x.由f(x)0,解得x(负值舍去)f(x)与f(x)在区间(0,)上的变化情况如下表:x(0,)(,)f(x)0f(x)所以,f(x)的单调递减区间是(0,),单调递增区间是(,)f(x)在x处取得极小值f()无极大值(2)证明:由(1)知,f(x)在区间(0,)上的最小值为f().因为f(x)存在零点,所以0,从而ke,当ke时,f(x)在区间(1,)上单调递减,且f()0,所以x是f(x)在区间(1,上的唯一零点当ke时,f(x)在区间(1,)上单调递减,且f(1)0,f()0,所以f(x)在区间(1,上仅有一个零点综上可知,若f(x)存在零点,则f(x)在区间(1,上仅有一个零点利用导数研究生活中的优化问题某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y10(x6)2,其中3x6,a为常数已知销售价格为5元/千克时,每日可售出该商品11千克(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大解(1)因为x5时,y11,所以1011,a2.(2)由(1)可知,该商品每日的销售量为y10(x6)2,所以商场每日销售该商品所获得的利润为f(x)(x3)210(x3)(x6)2,3x6.从而,f(x)10(x6)22(x3)(x6)30(x4)(x6),于是,当x变化时,f(x),f(x)的变化情况如下表:x(3,4)4(4,6)f(x)0f(x)单调递增极大值42单调递减由上表可得,x4时,函数f(x)取得极大值,也是最大值,所以,当x4时,函数f(x)取得最大值,且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大规律方法利用导数解决生活中优化问题的一般步骤(1)设自变量、因变量,建立函数关系式yf(x),并确定其定义域.(2)求函数的导数f(x),解方程f(x)0.(3)比较函数在区间端点和f(x)0的点的函数值的大小,最大(小)者为最大(小)值.(4)回归实际问题作答.(5)注意f(x)在开区间(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版无人机租赁与培训合同3篇
- 2025版环保产业用地租赁协议书3篇
- 燃气灶具维修指南
- 2024年装配式建筑土建工程承包合同范本3篇
- 大型农场桥梁施工合同
- 道路铺设工人合同
- 车站通风管道重建施工合同
- 环保企业行政专员聘用合同
- 2024年生物科技产品研发及购销合同范本3篇
- 2024年版权许可合同标的软件与许可权
- 山东省滨州市2023-2024学年高一上学期1月期末考试 政治 含答案
- 电力行业电力调度培训
- 【MOOC】气排球-东北大学 中国大学慕课MOOC答案
- 全力以赴备战期末-2024-2025学年上学期备战期末考试主题班会课件
- 《庆澳门回归盼祖国统一》主题班会教案
- 物流公司自然灾害、突发性事件应急预案(2篇)
- 《视频拍摄与制作:短视频 商品视频 直播视频(第2版)》-课程标准
- 公司战略与风险管理战略实施
- 医院培训课件:《乳腺癌解读》
- 24.教育规划纲要(2024-2024)
- 2023-2024学年苏州市八年级语文上学期期末考试卷附答案解析
评论
0/150
提交评论