已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
反比例函数导学案 第一课时 反比例函数(一)-反比例函数的意义目标导学:1理解并掌握反比例函数的概念2能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想4经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念以及意义。5培养观察、推理、分析能力,体验数形结合的数学思想,认识反比例函数的应用价值。学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式学习难点:理解反比例函数的概念学习过程:一、忆一忆回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?二、议一议1体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?2矩形面积为6,设长为,宽为,那么与的关系式是怎样的?3电流I、电阻R、电压U之间满足关系式U=IR,当U220V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?归纳:反比例函数:如果两个变量,之间的关系可以表示成 的形式,那么是的反比例函数,其中是自变量,反比例函数的自变量的取值范围是 .三、练一练1一个矩形的面积为20,相邻的两条边长分别为cm和cm。那么变量是变量的函数吗?为什么?2某村有耕地346公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么?3是的反比例函数,下表给出了与的一些值:-2-1132-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。四、测一测1下列等式中,哪些是反比例函数(1) (2) (3)21 (4) (5) (6) (7)2当m取什么值时,函数是反比例函数?3已知是的反比例函数,当时,.(1) 求与的函数关系式(2) 当2时,求函数的值4苹果每千克元,花10元钱可买千克的苹果,求出与之间的函数关系式.五、小结与反思: 第二课时 反比例函数(二)-反比例函数的图像和性质1目标导学:1.体会并了解反比例函数的图象的意义2.能描点画出反比例函数的图象3.通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。4结合正比例函数ykx(k0)的图象和性质,来帮助我们观察、分析及归纳,通过对比,能更好地理解和掌握所学的内容,体会数形结合的思想方法。5以积极探索的思想,逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质学习重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。学习难点:探索并掌握反比例函数的主要性质。学习过程:一、忆一忆1一次函数ykxb(k、b是常数,k0)的图象是什么?其性质有哪些?正比例函数ykx(k0)呢?2画函数图象的方法是什么?其一般步骤有哪些?应注意什么?方法与步骤利用描点作图;列表: 取自变量x的哪些值? x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。描点: 依据什么(数据、方法)找点?连线: 在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。二、探一探探索活动1 画出反比例函数与的图象探索活动2 反比例函数与的图象有什么共同特征? 它们之间有什么关系?归纳反比例函数图象的特征及性质:(1)(2)(3)三、练一练1已知反比例函数,分别根据下列条件求出字母k的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y随x的增大而增大2函数与(0)在同一坐标系中的图象可能是( ) 四、测一测1若函数与的图象交于第一、三象限,则m的取值范围是 2反比例函数,当x2时,y ;当x2时;y的取值范围是 ;当x2时;y的取值范围是 3 已知反比例函数,当时,y随x的增大而增大,求函数关系式。4反比例函数(0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AOC和BOD的面积分别是S1、S2,比较它们的大小,可得( )(A)S1S2 (B)S1S2 (C)S1S2 (D)大小关系不能确定5比较正比例函数和反比例函数的性质(填空并补充完整)正比例函数反比例函数解析式图像位置k0,在 象限k0,在 象限k0,在 象限k0,在 象限增减性k0,k0,k0, k0,五、小结与反思:第三课时 反比例函数(三)-反比例函数的图像和性质2目标导学:1进一步理解和掌握反比例函数及其图象与性质2能灵活运用函数图象和性质解决一些较综合的问题3深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法4经历观察、分析,交流的过程,逐步提高从函数图象中感受其规律的能力。5提高观察、分析的能力和对图形的感知水平,从整体上领悟研究函数的一般要求。学习重点:理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题学习难点:学会从图象上分析、解决问题,理解反比例函数的性质。学习过程:一、忆一忆1什么是反比例函数?2反比例函数的图象是什么?有什么性质?二、想一想1若点A(2,)、B(1,b)、C(3,c)在反比例函数(k0)图象上,则、b、c的大小关系怎样?解:2 如图, 一次函数ykxb的图象与反比例函数的图象交于A(2,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围解:3已知变量y是x的反比例函数,且当x=2时y=9。写出y与x之间的函数解析式和自变量的取值范围。 三、练一练1.当质量一定时,二氧化碳体积V与密度p成反比例。且V=5m3时,p=198kgm3(1)求p与V的函数关系式,并指出自变量的取值范围。(2)求V=9m3时,二氧化碳的密度。2.已知反比例函数y=k/x(k0)的图像经过点(4,3),求当x=6时,y的值。3. 已知y2与x+a(其中a为常数)成正比例关系,且图像过点A(0,4)、B(1,2),求y与x的函数关系式4.已知一次函数y= -x+8和反比例函数y =(1)k满足什么条件时,这两个函数在同一直角坐标系中的图象有两个交点?(2)如果其中一个交点为(1,9),求另一个交点坐标。4、 测一测1.若反比例函数在每个象限内y随x的增大而增大,则k=。2.若点(2,1)在反比例函数的图象上,则当x0时,y随x的增大而 。3.已知已知反比例函数y=(x0)的图象上有两点A(,若x则 ;4.已知反比例函数的图象在第二、第四象限内,函数图象上有两点A(,y1)、B(5,y2),则y1与y2的大小关系为( )。A、y1y2 B、y1y2 C、y1y2 D、无法确定5.已知已知反比例函数y=的图象上有两点A(,若,则 ;6.已知反比例函数和一次函数的图象都经过点, 求点P的坐标和这个一次函数的解析式; 若点M(,)和点N (,)都在这个一次函数的图象上试通过计算或利用一次函数的性质,说明大于5、 小结与反思:第四课时 实际问题与反比例函数(一)目标导学:1.能灵活运用反比例函数的知识解决实际问题。2.经历“实际问题建立模型拓展应用”的过程发展分析问题,解决问题的能力。3.经历观察、分析讨论法,交流的过程,逐步提高从实际问题中变量之间的关系,建立反比例函数模型的过程,认识反比例函数性质的应用方法。4.从现实情境中提出问题,提高“用数学”的意识。5.体验反比例函数是有效地描述现实世界的重要手段,体验数学的实用性,提高学数学的兴趣。学习重点:运用反比例函数的意义和性质解决实际问题。学习难点:从实际问题中寻找变量之间的关系,建立数学模型,教学时注意分析过程,渗透转化的数学思想。学习过程:一、想一想1某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道,从而顺利完成的任务的情境。(1) 当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?(P=)(2) 如果人和木板反湿地的压力合计600N,那么P是S 的反比例函数吗?为什么?(3) 如果人和木板对湿地的压力合计为600N,那么当木板面积为0.2m2时,压强是多少?2某煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下掘进多深?(3)当施工队施工的计划掘进到地下15m时,碰到了岩石,为了节约资金,公司临时改设计,把储存室的深改为15m,相应的,储存室的底面积改为多少才能满足需要。(保留两位小数)?二、练一练1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m (1)试求眼镜度数y与镜片焦距x之间的函数关系式; (2)求1 000度近视眼镜镜片的焦距 2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象 (1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)写出此函数的解析式; (3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完? 3制作一种产品,需先将材料加热到达60后,再进行操作设该材料温度为y(),从加热开始计算的时间为x(分钟)据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图所示)已知该材料在操作加工前的温度为15,加热5分钟后温度达到60(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?三、测一测1A、B两城市相距720千米,一列火车从A城去B城 (1)求火车的速度v(千米/时)和行驶的时间t(时)之间的函数关系式。 (2)若到达目的地后,按原路匀速原回,并要求在3小时内回到A城,则返回的速度不能低于多少? 2有一面积为60的梯形,其上底长是下底长的,若下底长为x,高为y,求y与x的函数关系式。3已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为 ( )4面积为2的ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是( )五、小结与反思: 第五课时 实际问题与反比例函数(二)目标导学:1.学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题2.感受实际问题的探索方法,培养化归的数学思想和分析问题的能力3.体验函数思想在解决实际问题中的应用,养成用数学的良好习惯学习重点:用反比例函数解决实际问题学习难点:构建反比例函数的数学模型学习过程:一、学一学阅读下面一段:公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡也可这样描述:阻力阻力臂动力动力臂为此,他留下一句名言:给我一个支点,我可以撬动地球!二、想一想1小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别是1200N和0.5m(1)动力F和动力臂L有怎样的函数关系?当动力臂为1.5m时,撬动石头至少要多大的力? (2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?(3)你能由此题,利用反比例函数知识解释:为什么使用撬棍时,动力臂越长越省力?联想物理课本上的电学知识告诉我们:用电器的输出功率P(瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系PR=U2,也可写为P= ,或R= 。三、练一练1某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示(千帕是一种压强单位)(1)写出这个函数的解析式:(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕(3) 当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米。2一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米(1)写出用高表示长的函数关系式;(2)写出自变量x的取值范围;(3)当厘米时,求y的值; (4)画出函数的图像 四、测一测1在某一电路中,电流I、电压U、电阻R三者之间满足关系I= (1)当哪个量一定时,另两个量成反比例函数关系?(2)若I和R之间的函数关系图象如图,试猜想这一电路的电压是_伏2已知力F对一个物体作的功是15焦,则力F与此物体在力在方向上移动的距离S之间的函数关系式的图象大致是( )3在一定的范围内,某种物品的需求量与供应量成反比例现已知当需求量为500吨时,市场供应量为10 000吨,试求当市场供应量为16000吨时的需求量。4某电厂有5 000吨电煤(1)求这些电煤能够使用的天数x(天)与该厂平均每天用煤吨数y(吨)之间的函数关系式。(2)若平均每天用煤200吨,这批电煤能用多少天? (3)若该电厂前10天每天用200吨,后因各地用电紧张,每天用煤300吨,这批电煤共可用多少天?五、小结与反思:第六课时 反比例函数复习复习目标:1.通过对实际问题中数量关系得探索,掌握用函数的思想去研究其变化规律2.结合具体情境体会和理解反比例函数的意义,并解决与它们有关的简单的实际问题3.让学生参与知识的发现和形成过程,强化数学的应用与建模意识,提高分析问题和解决问题的能力。复习重点:反比例函数的图像和性质在实际问题中的运用。复习难点:运用函数的性质和图像解综合题,要善于识别图形,勤于思考,获取有用的信息,灵活的运用数学思想方法。复习过程:一、忆一忆1.什么是反比例函数?2.你能回顾总结一下反比例函数的图像性质特征吗?与同伴交流。二、练一练1.反比例函数y = -的图象是 ,分布在第 象限,在每个象限内, y都随x的增大而 ;若 P1 (x1 , y1)、P2(x2 , y2) 都在第二象限且x1x2 , 则y1 y2。2.已知反比例函数 ,若x1x2 ,其对应值y1 、y2 的大小关系是 3.如图在坐标系中,直线y=x+ k与双曲线 在第一象限交与点A, 与x轴交于点C,AB垂直x轴,垂足为B,且SAOB1 1)求两个函数解析式(2)求ABC的面积4.已知反比例函数的图象经过点 ,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数的图象与x轴的交点坐标。三、做一做1.如图,一次函数的图象与反比例函数的图象交于两点(1)试确定上述反比例函数和一次函数的表达式;(2)求的面积OyxBA第1题图2.平行于直线的直线不经过第四象限,且与函数和图象交于点,过点作轴于点,轴于点,四边形的周长为8求直线的解析式ABOCyxl3.如图正比例函数y=k1x与反比例函数交于点A,从A向x轴、y轴分别作垂线,所构成的正方形的面积为4。分别求出正比例函数与反比例函数的解析式。求出正、反比例函数图像的另外一个交点坐标。求ODC的面积。4.如图1387已知一次函数与x轴、y轴分别交于点D、C两点和反比例函数交于A、B两点,且点A的坐标是(1,3)点B的坐标是(3,m)(1) 求a,k,m的值;(2) 求C、D两点的坐标,并求AOB的面积;(3) 利用图像直接写出,当x在什么取值范围时,?四、测一测一、 选择题():1.已知反比例函数的图象经过点,则函数可确定为( )A. B. C. D. 2.如果反比例函数的图象经过点,那么下列各点在此函数图象上的是( )A. B. C. D. 3.某个反比例函数的图象经过第一象限点P(2,0.5),则它的解析式为( )A. B. C. D. 4.已知反比例函数的图象上有两点、且,那么下列结论正确的是( )A. B. C. D与之间的大小关系不能确定5.已知反比例函数的图象如图,则函数的图象是下图中的( ) 6.已知关于x的函数和(k0),它们在同一坐标系内的图象大致是( ) 7.如图,点A是反比例函数图象上一点,ABy轴于点B,则AOB的面积是( )8题A. 1B. 2C. 3D. 48.某闭合电路中,电源的电压为定值,电流I(A)与电阻R()成反比例. 右图表示的是该电路中电流I与电阻R之间的图象,则用电阻R表示电流I的函数解析式为( )A. B. C. D. 二、填空题()1.点在双曲线上,则k=_.2.近视眼镜的度数y(度)与镜片焦距x(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论