高考数学一轮复习 第十章 第9课时 随机变量的期望与方差课件 理.ppt_第1页
高考数学一轮复习 第十章 第9课时 随机变量的期望与方差课件 理.ppt_第2页
高考数学一轮复习 第十章 第9课时 随机变量的期望与方差课件 理.ppt_第3页
高考数学一轮复习 第十章 第9课时 随机变量的期望与方差课件 理.ppt_第4页
高考数学一轮复习 第十章 第9课时 随机变量的期望与方差课件 理.ppt_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十章计数原理和概率 1 了解离散型随机变量的数学期望 方差 标准差的意义 会根据离散型随机变量的分布列求它的期望 方差 2 离散型随机变量的期望与方差在现实生活中有着重要意义 因此求期望 方差是应用题的命题方向 请注意期望与方差是随机变量最重要的两个特征数 它们所表示的意义具有很大的实用价值 是高考的热点之一 高考的主要题型有两种 一是求期望值和方差 二是有关的应用题 1 期望与方差若离散型随机变量 的概率分布为 标准差 2 离散型随机变量的期望与方差具有下列性质 1 离散型随机变量 的期望e 与方差d 是一个 它们是随机变量 本身所固有的一个数字特征 它们不具有随机性 2 若离散型随机变量的一切值位于区间 a b 内 e 的取值范围是 3 离散型随机变量的期望反映随机变量可能取值的 而方差反映随机变量取值偏离于均值的平均程度 数值 a e b 平均水平 4 若 a b 其中 是离散型随机变量 a b为常数 则e d 5 离散型随机变量的期望与方差若存在则必唯一 期望e 的值既可正也可负 而方差的值则一定是一个非负值 6 d e 2 e 2 ae b a2d 3 常见离散型随机变量 的期望与方差 1 两点分布 若随机变量 满足p 1 p p 0 1 p 则e d 2 二项分布 若随机变量 b n p 则e d p p 1 p np np 1 p 1 判断下面结论是否正确 打 或 1 期望是算术平均数概念的推广 与概率无关 2 随机变量的均值是常数 样本的平均值是随机变量 3 随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度 方差或标准差越小 则偏离均值的平均程度越小 4 在篮球比赛中 罚球命中1次得1分 不中得0分 如果某运动员罚球命中的概率为0 7 那么他罚球1次的得分x的均值是0 7 答案 1 2 3 4 2 设随机变量 b n p 且e 1 6 d 1 28 则 a n 8 p 0 2b n 4 p 0 4c n 5 p 0 32d n 7 p 0 45答案a解析由e np 1 6 d np 1 p 1 28 检验可知n 8 p 0 2符合 3 2014 陕西理 设样本数据x1 x2 x10的均值和方差分别为1和4 若yi xi a a为非零常数 i 1 2 10 则y1 y2 y10的均值和方差分别为 a 1 a 4b 1 a 4 ac 1 4d 1 4 a答案a 4 2014 上海黄浦二模 某个不透明的袋中装有除颜色外其他特征完全相同的8个乒乓球 其中3个是白色球 5个是黄色球 小李同学从袋中一个一个地摸乒乓球 每次摸出球后不放回 当摸到的球是黄球时停止摸球 用随机变量 表示小李同学首先摸到黄色乒乓球时的摸球次数 则随机变量 的数学期望值e 解析 的分布列为 5 随机变量 的分布列如下 题型一期望 方差的性质 探究1若 是随机变量 则 f 一般仍是随机变量 在求 的期望和方差时 熟练应用期望和方差的性质 可以避免再求 的分布列带来的繁琐运算 1 设非零常数d是等差数列x1 x2 x3 x19的公差 随机变量 等可能地取值x1 x2 x3 x19 则方差d 思考题1 2 袋中有20个大小相同的球 其中记上0号的有10个 记上n号的有n个 n 1 2 3 4 现从袋中任取一个球 表示所取球的标号 求 的分布列 期望和方差 若 a b e 1 d 11 试求a b的值 解析 的分布列为 答案 e 1 5 d 2 75 a 2 b 2或a 2 b 4 例2一口袋中装有大小相同的2个白球和4个黑球 每次从袋中任意摸出一个球 1 采取有放回抽样方式 从中摸出两个球 求两球恰好颜色不同的概率 2 采取不放回抽样方式 从中摸出两个球 求摸得白球的个数的均值和方差 题型二期望与方差的计算 x的分布列为 探究2求离散型随机变量x的均值与方差的方法 1 写出x的分布列 2 由均值的定义求e x 3 由方差的定义求d x 2014 天津理 某大学志愿者协会有6名男同学 4名女同学 在这10名同学中 3名同学来自数学学院 其余7名同学来自物理 化学等其他互不相同的七个学院 现从这10名同学中随机选取3名同学 到希望小学进行支教活动 每位同学被选到的可能性相同 1 求选出的3名同学是来自互不相同学院的概率 2 设x为选出的3名同学中女同学的人数 求随机变量x的分布列和数学期望 思考题2 思路 1 利用古典概型的概率公式求解 2 先确定随机变量x的所有取值 求出对应的概率 列出分布列 再代入随机变量的期望公式求解 题型三二项分布的均值与方差 探究3求随机变量 的期望时 可首先分析 是否服从二项分布 若 b n p 则用公式e np求解 可大大减少计算量 思考题3 考生甲正确完成题数的分布列为 从做对题数的数学期望考查 两人水平相当 从做对题数的方差考查 甲较稳定 从至少完成2题的概率考查 甲获得通过的可能性大 因此可以判断甲的实验操作能力较强 答案 1 e 甲 2 e 乙 2 2 甲的实验操作能力较强 1 离散型随机变量的数学期望与方差是对随机变量的简明的描写 期望表示在随机试验中随机变量取得的平均值 方差表示随机变量所取的值相对于它的期望值的集中与离散程度 即取值的稳定性 把握离散型随机变量的数学期望与方差的含义 是处理有关应用题的重要环节 2 期望与方差的常用性质 掌握下述有关性质 会给解题带来方便 1 e a b ae b e e e d a b a2d 2 若 b n p 则e np d np 1 p 1 有10件产品 其中3件是次品 从中任取2件 若x表示取到次品的个数 则e x 等于 答案b 3 2015 衡水调研卷 某地消防大队紧急抽调1 2 3 4 5号五辆消防车 分配到附近的a b c d四个村子进行送水抗旱工作 每个村子至少要安排一辆消防车 若这五辆消防车中去a村的辆数为随机变量 则e 的值为 答案d 4 马老师从课本上抄录的一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论