全等三角形压轴题分类解析.doc_第1页
全等三角形压轴题分类解析.doc_第2页
全等三角形压轴题分类解析.doc_第3页
全等三角形压轴题分类解析.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

七年级下三角形综合题归类考点2:利用角相等证明垂直1. 已知BE,CF是ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系2. 如图,在等腰RtABC中,ACB=90,D为BC的中点,DEAB,垂足为E,过点B作BFAC交DE的延长线于点F,连接CF(1)求证:CD=BF;(2)求证:ADCF;(3)连接AF,试判断ACF的形状.ABCDEF图9拓展巩固:如图9所示,ABC是等腰直角三角形,ACB90,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:ADCBDE3. 如图1,已知正方形的边在正方形的边上,连接,.(1)试猜想与有怎样的位置关系,并证明你的结论;(2)将正方形绕点按顺时针方向旋转,使点落在边上,如图2,连接和.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.4.如图1,的边BC在直线上,且的边也在直线 上,边与边重合,且(1) 在图1中,请你通过观察、测量,猜想并写出与所满足的数量关系和位置关系;(2) 将沿直线向左平移到图2的位置时,交于点,连接.猜想并写出与所满足的数量关系和位置关系,请证明你的猜想;(3)将沿直线向左平移到图3的位置时,的延长线交的延长ABECFPl(3)Q线于点Q,连结,你认为(2)中所猜想的与的数量关系和位置关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由. l(1)AB(F)(E)CPABECFPQ(2)l三、 等腰三角形(中考重难点之一)考点1:等腰三角形性质的应用1. 两个全等的含,角的三角板和三角板,如图所示放置,三点在一条直线上,连结,取的中点,连结试判断的形状,并说明理由压轴题拓展:(三线合一性质的应用)已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证当绕点旋转到和不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,又有怎样的数量关系?请写出你的猜想,不需证明2. 已知:如图,ABC中,ABC=45,CDAB于D,BE平分ABC,且BEAC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。(1) BF=AC (2) CE=BF (3)CE与BC的大小关系如何。考点2:等腰直角三角形(45度的联想)1. 如图1,四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与CBM的平分线BF相交于点F. 如图141,当点E在AB边的中点位置时: 通过测量DE,EF的长度,猜想DE与EF满足的数量关系是 ; 连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ; 请证明你的上述两猜想. 如图142,当点E在AB边上的任意位置时,请你在AD边上找到一点N, 使得NE=BF,进而猜想此时DE与EF有怎样的数量关系并证明2. 在RtABC中,ACBC,ACB90,D是AC的中点,DGAC交AB于点G.(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与 CF,过点F作FHFC,交直线AB于点H求证:DG=DC 判断FH与FC的数量关系并加以证明(2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,借助图2画出图形。在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变(直接写出结论,不必证明)图2图1同类变式: 已知:ABC为等边三角形,M是BC延长线上一点,直角三角尺的一条直角边经过点A,且60角的顶点E在BC上滑动,(点E不与点B、C重合),斜边与ACM的平分线CF交于点F(1)如图(1)当点E在BC边得中点位置时 猜想AE与EF满足的数量关系是 . 连结点E与边得中点,猜想和满足的数量关系是.请证明你的上述猜想;()如图()当点在边得任意位置时,和EF有怎样的数量关系,并说明你的理由? 附加思考题: 以的两边、为腰分别向外作等腰和等腰,.连接,、分别是、的中点探究:与的位置关系及数量关系如图 当为直角三角形时,与的位置关系是 ;线段与的数量关系是 ;将图中的等腰绕点沿逆时针方向旋转()后,如图所示,问中得到的两个结论是否发生改变?并说明理由 24、已知:如图,矩形中点为延长线上一点,连接,且,点分别在上,且。(1)若,求的长;(2)若,求证:。12、(2010年宁德市)(本题满分13分)如图,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60得到BN,连接EN、AM、CM. 求证:AMBENB;EA DB CNM 当M点在何处时,AMCM的值最小;当M点在何处时,AMBMCM的值最小,并说明理由; 当AMBMCM的最小值为时,求正方形的边长.28如图甲,已知ABC=90,ABD是边长为2的等边三角形,点E为射线BC上任意一点(点E与点B不重合),连结AE,在AE的上方作等边三角形AEF,连结FD并延长交射线BC于点G(1)如图乙,当BE=BA时,求证:ABEADF;(2)如图甲,当AEF与ABD不重叠时,求FGC的度数;图甲ACBDFGE图乙ABDFEGC图丙F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论