正交试验设计与数据处理课件.ppt_第1页
正交试验设计与数据处理课件.ppt_第2页
正交试验设计与数据处理课件.ppt_第3页
正交试验设计与数据处理课件.ppt_第4页
正交试验设计与数据处理课件.ppt_第5页
已阅读5页,还剩82页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4章正交试验设计与数据处理 在生产实践中 试制新产品 改革工艺 寻求好的生产条件等 这些都需要做试验 而试验总是要花费时间 消耗人力 物力 因此 试验的次数应尽可能少 全面试验 如4个3水平的因素 要做34 81次试验 6个5水平的因素 要做56 15625次试验 非常困难 能否减少试验次数 而又不影响试验效果呢 有 正交试验 4 1正交表及其用法 正交表的记号 L9 34 表示4个因素 每个因素取3个水平的正交表 格式如表4 1所示 4 1正交表及其用法 正交表记为Ln mk m是各因素的水平 k 列数 是因素的个数 n是安排试验的次数 行数 L9 34 4因素3水平正交试验 共做9次试验 而全面试验要做34 81次 减少了72次 L25 56 6因素5水平正交试验 共做25次试验 而全面试验要做56 15625次 减少了15600次 正交表的两条重要性质 1 每列中不同数字出现的次数是相等的 如L9 34 每列中不同的数字是1 2 3 它们各出现三次 2 在任意两列中 将同一行的两个数字看成有序数对时 每种数对出现的次数是相等的 如如L9 34 有序数对共有9个 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 它们各出现一次 4 1正交表及其用法 由于正交表的性质 用它来安排试验时 各因素的各种水平是搭配均衡的 下面通过具体例子来说明如何用正交表进行试验设计 例4 1某水泥厂为了提高水泥的强度 需要通过试验选择最好的生产方案 经研究 有3个因素影响水泥的强度 这3个因素分别为生料中矿化剂的用量 烧成温度 保温时间 每个因素都考虑3个水平 具体情况如表4 2 试验的考察指标为28天的抗压强度 MPa 分别为44 1 45 3 46 7 48 2 46 2 47 0 45 3 43 2 46 3 问 对这3个因素的3个水平如何安排 才能获得最高的水泥的抗压强度 解 在这个问题中 人们关心的是水泥的抗压强度 我们称它为试验指标 如何安排试验才能获得最高的水泥抗压强度 这只有通过试验才能解决 这里有3个因素 每个因素有3个水平 是一个3因素 3水平的问题 如果每个因素的每个水平都互相搭配着进行全面试验 必须做试验33 27次 我们把所有可能的搭配试验编号写出 列在表4 3中 例4 1 进行27次试验要花很多时间 耗费不少人力 物力 为了减少试验次数 但又不能影响试验的效果 因此 不能随便地减少试验 应当把有代表性的搭配保留下来 为此 按L9 34 表中前3列的情况从27个试验中选取9个 它们的序号分别为1 5 9 11 15 16 21 22 26 将这9个试验按新的编号1 9写出来 正好是正交表L9 34 的前3列 如表4 1所示 为了便于分析计算 把考查指标 铁水温度 列于表4 4的右边 做成一个新的表4 5 利用张表进行分析计算 从表4 5中的数据处理与分析 可以得出结论 各因素对考查指标 抗压强度 的影响按大小次序来说应当是A 矿化剂用量 B 保温时间 C 烧成温度 最好的方案应当是A2C2B3 即 例4 1 A2 矿化剂用量 第2水平 4 C2 保温时间 第2水平 30min B3 烧成温度 第3水平 1450 得出的最好方案在已经做过的9次试验中没有出现 与它比较接近的是第4号试验 在第4号试验中只有烧成温度B不是处于最好水平 而且烧成温度对抗压强度的影响是3个因素中最小的 从实际做出的结果看出第4号试验中的抗压强度是48 2MPa 是9次试验中最高的 这也说明我们找出的最好方案是符合实际的 为了最终确定试验方案A2C2B3是不是最好方案 可以按这个方案再试验一次 若比4号好 作为最好结果 若比4号差 则以4号为最佳条件 如出现后一结果 说明我们的理论分析与实践有一定的差距 最终还是要接受实践的检验 正交试验步骤归纳如下 1 确定要考核的试验指标 2 确定要考察的因素和各因素的水平 以上两条要实践经验来决定 3 选用合适的正交表 一般只要正交表中的因素个数比试验要考察的因素的个数稍大或相等就行了 这样既保证了试验目的 而试验次数又不致太多 省工省时 4 试验 测定试验指标 5 试验结果分析计算 得出合理的结论 以上的方法 直观分析法 简单 计算量小 很实用 正交试验的主要分析工具是正交表 而在因素及其水平都确定的情况下 正交表并不是唯一的 常见的正交表见本书末附表4 4 2多指标的分析方法 在例4 1中 试验指标只有一个 考察起来比较方便 但实际问题中 需要考察的指标往往不止一个 有时有两个 三个或更多 如何评价考察指标呢 两种方法 4 2 1综合平衡法 通过具体的例子来加以说明 例4 2某陶瓷厂为了提高产品质量 要对生产的原料进行配方试验 要检验3项指标 抗压强度 落下强度和裂纹度 前两个指标越大越好 第3个指标越小越好 根据以往的经验 配方有3个重要因素 水分 粒度和碱度 它们各有3个水平 具体数据如表4 6所示 试进行试验分析 找出最好的配方方案 4 2 1综合平衡法 例4 2的解 解3因素3水平 应选L9 34 正交表来安排试验 将3个因素依次放在前3列 第4列不要 得出一张具体的试验方案表 测出需要检验的指标结果 列于表4 7 a b c 中 然后用直观分析法对每个指标分别进行计算分析 将3个指标分别进行计算分析后 得出3个好的方案 对抗压强度是A2B3C1 对落下强度是A3B3C2 对裂纹度是A2B3C1 这3个方案不完全相同 对一个指标是好方案 而对另一个指标却不一定是好方案 如何找出对各个指标都较好的一个共同方案呢 综合分析 将指标随因素水平变化的情况用图形表示出来 如图4 0所示 为了看得清楚 将各点用直线连接起来 实际上并不一定是直线 把图4 1和表4 7结合起来分析 看每一个因素对各指标的影响 图4 0 4 2 1综合平衡法 例4 2的解的综合分析 1 粒度B对抗压强度和落下强度来讲 极差最大 是最大的影响因素 从图4 0中看出三个指标B均取8为最好 即取B3 2 碱度C 极差不大 次要因素 由图4 0分析 取1 1时两个指标好 1个指标稍差 对三个指标综合考虑 C取1 1 即取C1 3 水分A 对裂纹度影响极差最大 A取9最好 由图4 0综合考虑A取9 即取A2 通过各因素对各指标影响的综合分析 得出较好的试验方案是 B3 粒度取第3水平 8 C1 碱度取第1水平 1 1 A2 水分取第2水平 9 4 2 2综合评分法 对多指标的问题 真正做到好的综合平衡 有时很困难 这是综合平衡法的缺点 综合评分法可以克服这个缺点 例4 3某厂生产一种化工产品 需要检验两个指标 核酸纯度和回收率 这两个指标都是越大越好 有影响的因素有4个 各有3个水平 具体情况如表4 8所示 试通过试验分析出较好方案 使产品的核酸含量和回收率都有提高 解这是4因素3水平的试验 可以选用正交表L9 34 安排出试验方案 这里有4个因素 正好将表排满 进行试验 将得出的结果列入表4 9中 综合评分法是根据各个指标的重要性的不同 按照得出的试验结果综合分析 给每一个试验评出一个分数 作为这个试验的总指标 根据这个总指标作进一步的分析 4 2 2综合评分法 例4 3的解 这个方法的关键是如何评分 在这个试验中 两个指标的重要性是不同的 根据实践经验知道 纯度的重要性大于回收率 从实际分析 可以认为纯度是回收率的4倍 也就是纯度占权数为4 回收率占权数为1 按这个权数给出这个试验的总分为 总分 4 纯度 1 回收率 由上式计算出这个试验的总分数 列于表4 9的最右边 再根据这个分数 用直观分析法进行分析 从表4 9看出 A D两个因素的极差都很大 是对试验影响很大的两个因素 A1 D1为好 B因素的极差比A D的极差小 对试验的影响比A D都小 B因素取B3为好 C因素的极差最小 影响最小 C取C2为好 综合考虑 最好的试验方案应当是A1B3C2D1 按影响大小次序排列为 4 2 2综合评分法 例4 3的解 A1 时间 25小时 D1 加水量 1 6 B3 料中核酸含量 6 0 C2 pH值 6 0 可以看出 这里分析出来的最好方案 在已经做过的9个试验中是没有的 可以按这个方案再试验一次 看能不能得出比第1号试验更好的结果 从而确定出真正最好的试验方案 综合评分法是将多指标的问题 通过加权计算总分的方法化成一个指标的问题 这样对结果的分析计算都比较方便 简单 但如何合理地评分 是最关键的问题 这一点只能依据实际经验来解决 单纯从数学上是无法解决的 4 3混合水平的正交试验设计 在实际情况中 有时做试验时 每个因素的水平数是不同的 混合水平 两种解决方案 4 3 1混合水平正交试验设计 混合水平正交表就是各因素的水平数不完全相等的正交表 这种正交表有好多种 比如L8 41 24 就是一个混合水平的正交表 如表4 10所示 其它混合水平的正交表还有很多 见附表所示 它们都有上面所说的两点 例4 4某农科站进行品种试验 具体试验因素及水平如表4 11所示 试验指标是产量 数值越大越好 试用混合正交表安排试验 找出最好的试验方案 例4 4的解 解这个问题中有4个因素 1个是4水平的 3个是2水平的 正好可以选用混合正交表L8 41 23 因素A为4水平 放在第1列 其余3个2水平的因素B C D顺序放在2 3 4列上 第5列不用 按这个方案进行试验 将得出的试验结果放在正交表的右边 然后进行分析 见表4 12 经分析得最佳方案为 A2B2C2D2 因为 从极差分析可知 因素D影响很小 这个方案与第4号试验结果A2B2C2D1很接近 从试验结果看出 第4号试验是8个试验中产量最高的 因此完全有理由取第4号试验作为最好的试验方案加以推广 4 3 2拟水平法 例4 5今有某一试验 试验指标只有一个 它的数值越小越好 这个试验有4个因素A B C D 其中因素C是2水平的 其余3个因素都是3水平的 具体数值如表4 13所示 试安排试验 并对试验结果进行分析 找出最好的试验方案 解 4因素试验 C为2个水平 A B D为3个水平 没有合适的正交表 设想 假若C有3个水平 就变成4因素3水平的问题了 如何将C变成3水平的因素呢 从C中的1和2水平中选一个水平让它重复一次作为第3水平 这就叫虚拟水平 取哪一个水平作为第3水平呢 一般说 都是要根据实际经验 选取一个较好的水平 比如 如果认为第2水平比第1水平好 就选第2水平作为第3水平 这样因素水平表4 13就变为表4 14的样子 它比表4 13多了一个虚拟的第3水平 例4 5的解 这样就变成了一个4因素3水平的试验 可以按L9 34 表安排试验 并对正交表进行重构 测出结果 并进行分析 见表4 15所示 从表4 15的极差可以看出 因素D对试验的影响最大 取第3水平最好 其次是因素A 取第3水平为好 再者是因素B 取第1水平为好 因素C影响最小 取第1水平为好 最优方案为 A3B1D3C1 这个方案在9个试验中没有 从试验结果看8号试验为最好 这个试验只有B不是处在最好情况 而因素B的影响是最小的 可以按这个方案再试验一次 看是否会得出比第8号试验更好的结果 从而确定出真正的最优方案 4 4有交互作用的正交试验设计 例4 6有4块试验田 土质情况基本一样 种植同样的作物 现将氮肥 磷肥采用不同的方式分别加在4块地里 收获后算出平均亩产 记在表4 16中 氮肥 磷肥交互作用的效果 氮肥 磷肥的总效果 只加氮肥的效果 只加磷肥的效果 在多因素的试验中 交互作用影响的大小参照实际经验 如果确有把握认定交互作用的影响很小 就可以忽略不计 如果不能确认交互作用的影响很小 就应该通过试验分析交互作用的大小 4 4 1交互作用表 下面介绍交互作用表和它的用法 表4 17就是正交表L8 27 所对应的交互作用表 P183附表4中 列出了几个交互作用的正交表 正交表自由度的确定 1 每列的自由度f列 水平数 1 2 两因素交互作用的自由度fA B fA fB 两因素自由度的乘积 对2因素2水平的正交表 因为 fA fB 2 1 每列只有一个自由度 而fA B fA fB 1 1 1 所以也占一列 4 4 1交互作用表 对于2因素3水平 fA fB 3 1 2 每列有2个自由度 而fA B fA fB 2 2 4 由于交互作用列有4个自由度 而每列是2个自由度 因此2个3水平因素的交互作用列占2列 对于2因素n水平 fA fB n 1 每列有n个自由度 而两因素交互作用的自由度为 fA B fA fB n 1 n 1 所以交互作用列要占 n 1 列 4 4 2水平数相同的有交互作用的正交设计 例4 7某产品的产量取决于3个因素A B C 每个因素都有两个水平 具体数值如表4 18所示 每两个因素都有交互作用 必须考虑 试验指标为产量 越高越好 试安排试验 并分析试验结果 找出最好的方案 1 2 3 4 5 6 7 1 3 2 5 4 7 6 2 1 6 7 4 5 3 7 6 5 4 4 1 2 3 5 3 2 6 1 7 表 4 17 列号 列号 例4 7的解 解这是3因素2水平的试验 3个因素A B C要占3列 它们之间的交互作用A B B C A C又各占3列 共占6列 可以用正交表L8 27 来安排试验 若将A B放在第1 2列 从表4 17查出A B应在第3列 因此C就不能放在第3列 否则就要和A B混杂 现将C放在第4列 由表4 17查出A C应在第5列 B C应在第6列 按这种安排进行试验 测出结果 用直观分析法进行分析 把交互作用当成新的因素看待 整个分析过程记录在表4 19中 最后要说明一点 在这里只考虑两列间的交互作用A B B C A C 3个因素的交互作用A B C 一般影响很小 这里不去考虑它 4 5正交表的构造法 从前面的内容可以看出 正交表的用处和好处 那么正交表是如何得来的呢 下面就介绍两种正交表的构造方法 4 5 1阿达玛矩阵法 4 5 1 1阿达玛矩阵 阿阵定义 以 1 1为元素 并且任意两列都是正交的矩阵 性质 1 每列元素个数都是偶数 2 任意两列 两行 交换后 仍为阿阵 3 任意一列 或行 乘 1以后 仍为阿阵 标准阿阵 第一列全为1列 用对行乘 1可得 阿方阵 行 列相等 阿阵 偶阶方阵 4 5 1 1 阿达玛矩阵 n阶阿阵记为Hn 感兴趣 第一列 第一行全为1的阿阵 例如 直积构造高阶阿阵的方法 定义 设两个2阶方阵A B 它们直积记为A B 定义如下 4 5 1 1 阿达玛矩阵 这是一个4阶方阵 有下面两个定理 定理1设2阶方阵A B如果它们中的两列是正交的 则它们的直积A B的任意两列也是正交的 定理2两个阿阵的直积是一个高阶阿阵 据此 可以用简单的低阶阿阵 用求直积的方法得出高阶阿阵 例如有 4 5 1 1 阿达玛矩阵 依此类推有 一个固定阶的阿阵并不是唯一的 比如 都是2阶阿阵H2 但我们最感兴趣的是第一个 标准阿阵 4 5 22个水平正交表的阿达玛矩阵法 有了第1列第1行全为1的标准阿阵 构造2水平的正交表就非常方便了 1 L4 23 正交表的构造 取标准阿阵H4如下 将全1列去掉 得出 4 5 1 2 2个水平正交表的阿达玛矩阵法 将 1改写为2 按顺序配上列号 行号 就得到2水平正交表L4 23 见表4 20所示 2 L8 27 正交表的构造法 取标准阿阵H8如下 4 5 1 2 2个水平正交表的阿达玛矩阵法 去掉全1列 将 1改写为2 并按顺序配上列号 行号 就得到正交表L8 27 见表4 21 总结 先取一个标准阿阵Hn 去掉全1列 将 1列改写为2 配上列号 行号 就得正交表Ln 2n 1 上法只能构造2水平正交表 更多水平的正交表 用正交拉丁方的方法来解决 4 5 2正交拉丁方的方法 4 5 2 1拉丁方 定义 用n个不同的拉丁字母排成一个n阶方阵 n 26 如果每个字母在任一行 任一列中只出现一次 则称这种方阵为n n拉丁方 简称为n阶拉丁方 例如 用3个字母A B C可排成 3 3拉丁方 用4个字母A B C D可排成 4 4拉丁方 这两个拉丁方不是唯一的 4 5 2 1 拉丁方 感性趣 正交拉丁方 定义 设有两个同阶的拉丁方 如果对第一个拉丁方排列着相同字母的各个位置上 第二拉丁方在同样位置上排列着不同字母 则称这两个拉丁方为互相正交的拉丁方 3阶拉丁方 与 是正交拉丁方 正交拉丁方只有两个 四阶正交拉丁方 与 4阶拉丁方中 正交拉丁方只有3个 5阶拉丁方中 正交拉丁方只有4个 6阶拉丁方中 正交拉丁方只有5个 数学上已经证明 n阶拉丁方的正交拉丁方个数为 n 1 个 4 5 2 1 拉丁方 4 5 2 1 拉丁方 将字母拉丁方改写为数字拉丁方性质没有影响 比如3阶拉丁方可写为 与 为正交拉丁方 4 5 2 23水平正交表的构造 首先考虑两个3水平因素A B 把它们所有水平搭配都写出来32 9个 按下面的方式排成两列 4列 3列 4 5 2 34水平正交表 因素A B两个4水平的全排列42 16个 构成基本列 三个正交拉丁方 按1 2 3 4列分别按顺序排成1列 共3列 放在基本列右则 得5列16行矩阵 得表4 23 为L16 45 正交表 3 4 5 配上三个正交拉丁方 4 5 2 4混合型正交表的构造法 混合型正交表可以由一般水平数相等的正交表通过 并列法 改造而成 举典型的例子加以说明 例4 8混合型正交表L8 4 24 的构造法 解 1 先列出正交表L8 27 见表4 24 2 取出表4 24中的1 2列 将数对 1 1 1 2 2 1 2 2 与单数字1 2 3 4依次对应 作为新表第1列 3 去掉1 2的第3列 交互作用 4 4 5 6 7列左移 依次变为新表的2 3 4 5列 表4 24L8 27 正交表 其它正交表的构造法 与此法相同 不再赘述 请自学例4 9 例4 10 4 6正交试验设计的方差分析 本节用方差分析法对正交试验的结果作进一步的分析 4 6 1正交试验设计方差分析的步骤与格式 设用正交表安排m个因素的试验 试验总次数为n 试验结果分别为x1 x2 xn 假定每个因素有na个水平 每个水平做a次试验 则n ana 现分析下面几个问题 1 计算离差的平方和 a总离差的平方和ST b各因素离差的平方和S因 c试验误差的离差平方和SE 2 计算自由度 3 计算平均离差平方和 均方 4 求F比 5 对因素进行显著性检验 4 6 23水平正交设计的方差分析 例4 11为了提高产量 需要考虑3个因素 反应温度 反应压力和溶液浓度 每个因素都取3个水平 具体数值如表4 31所示 考虑因素之间的所有一级交互作用 试进行方差分析 找出最好的工艺条件 解 所有一级交互作用 A B A C B C 自由度 fA 水平数 1 3 1 2 fB fC 2020 1 29 43 可编辑 2020 1 29 44 可编辑 fA B fA fB 2 2 4 fB C fA C各占两列 共有9列 选用正交表L27 313 见表4 32所示 m个因素的试验 m 9 试验次数 n 27 试验结果分别为 x1 x2 xk xn 每个因素有na个水平 na 3 每个水平做a次试验 a 9 则n ana 3 9 27 1 计算离差平方和 1 总离差平方和ST 记 相当于例4 11产量的平均值 记为 ST反应了试验结果的总差异 它越大 结果之间差异越大 两方面的原因 因素水平变化 试验误差 2 各因素离差的平方和 以因素A为例 SA 用xij表示A的系i水平第j个试验结果 i 1 2 3 na j 1 a 记为 Ki 第i个水平a次试验结果的和 用同样的方法可以计算其它因素的离差平方和 对两因素的交互作用 把它当成一个新的因素看待 如果交互作用占两列 则交互作用的离差平方和等于这两列的离差平方和之和 比如 3 试验误差的离差平方和SE 设S因 交为所有因素以及要考虑的交互作用的离差平方和 因为 所以 2 自由度计算 各因素自由度 两因素交互作用的自由度 试验误差自由度 见表4 33所示 3 计算平均离差平方和 均方 MS 在计算各因素离差平方和时 我们知道 它们是若干项平方的和 它们的大小与项数有关 因此 不能确切地反映各因素的情况 为了消除项的影响 引入平均离差平方和 4 求F比 5 对因素进行显著性检验 给出检验水平a 以Fa f因 fE 查 附表3 F分布表 比较若F Fa f因 fE 说明该因素对试验结果的影响显著 F F0 01 f因 fE 影响高度显著 F0 01 f因 fE F F0 05 f因 fE 影响显著 F F0 05 f因 fE 影响不显著 计算结果见表4 33 表4 34所示 4 6 32水平正交设计的方差分析 由于2水平正交设计比较简单 它的方差分析可以采用特殊的分析方法 2水平正交设计 各因素离差平方和为 上式同样适用于交互作用项 例4 12某厂生产水泥花砖 其抗压强度取决于3个因素 A水泥的含量 B水分 C添加剂 每个因素都有两个水平 具体数值如表4 35a所示 每两个因素之间都有交互作用 必须考虑 试验指标为抗压强度 kg cm2 分别为66 2 74 3 73 0 76 4 70 2 75 0 62 3 71 2越高越好 试安排试验 并用方差分析对试验结果进行分析 找出最好的方案 解列出正交表L8 27 和试验结果见表4 35 说明 误差平方和SE SE ST S因 S交 还可以用另一种算法计算SE SE S空列 S7列 9 68 方差分析见表4 36 4 6 4混合型正交一表的方差分析 与一般水平相同 注意各列水平数的差别 说明 试验结果 试验次数 例4 13为提高某矿物的烧结质量 做下面配料试验 各因素及其水平如表4 38所示 单位 t 反映质量好坏的试验指标为含铁量 分别为50 9 47 1 51 4 51 8 54 3 49 8 51 5 51 3越高越好 试安排试验 并进行方差分析 找出最好的方案 试验结果及计算列于表4 39 方差计算与分析列于表4 40 4 6 5拟水平法的方差分析 与一般方法无本质性的区别 在计算拟水平列时要注意各水平的重复次数不同 例4 14钢片在镀锌前要用酸洗的方法除锈 为了提高除锈效率 缩短酸洗时间 先安排酸洗试验 考察指标是酸洗时间 在除锈效果达到要求的情况下 酸洗时间越短越好 要考虑的因素及其水平如表4 41所示 解 选取正交表L9 34 将因素C虚拟1个水平 据经验知 海鸥牌比OP牌的效果好 故虚拟第2水平 海鸥牌 安排在第1列 因素B A D依次安排在第2 3 4列 表已排满 进行试验 测试结果列于表4 42右边 方差计算与分析列于表4 43 表4 44 4 6 6重复试验的方差分析 重复试验就是对每个试验号重复多次 这样能很好地估计试验误差 它的方差分析与无重复试验基本相同 但要注意几点 1 计算K1 K2 时 要用各号试验重复r次的数据之和 2 计算因素离差平方和时 公式中的 水平重复数a要改写为 a r 每个水平试验次数 第i个水平试验结果的和 水平数 试验次数 重复试验次数 3 总体试验误差平方和SE由两部分构成 第一类误差 即空列误差SE1 第二类误差即重复试验误差SE2 SE SE1 SE2 自由度fE fE1 fE2 SE2的计算公式为 fE2 n r 例4 15硅钢带取消空气退火工艺试验 空气退火能脱除一部分碳 但钢带表面会生成一层很厚的氧化皮 增加酸洗的困难欲取消这道工序 为此要做试验 试验指标是钢带的磁性 看一看取消空气退火工艺后钢带磁性有没有大的变化 本试验考虑2个因素每个因素2个水平 退火工艺A A1为进行空气退火 A2为取消空气退火 成品厚度B B1 0 2mm B2 0 35mm 解 选用L4 23 正交表安排试验 每个试验号重复5次 试验结果与计算列于表4 45 方差分析与计算结果列于表4 46 4 6 7重复取样的方差分析 重复试验增加了试验次数 这样会使试验费用增加 时间延长 如果试验得出的产品是多个 可以采用重复取样的方法来考察因素的影响 重复取样和重复试验在计算ST S因 SE时 方法是一样的 但要注意的是 重复取样误差反映的是产品的不均匀性与试样测量误差 称为局部试验误差 一般说这种误差较小 应该说不能用它来检验各因素水平之间是否存在差异 但是如果符合下面两种情况 可以把重复取样得出的误差平方和SE2作为试验误差 1 正交表的各列全部排满 无SE1 S空列 用SE2作为试验误差来检验各因素及交互作用 检验结果有一半左右的因素及交互作用的影响不显著 就可以认为这种检验是合理的 2 SE2与SE1相差不大 可以合并SE SE1 SE2 何为 相差不大 呢 用F值检验 由检验水平a 查分布 若F Fa 则SE1与SE2差别不显著 相差不大 SE SE1 SE2fE fE1 fE2 若F Fa 则SE1与SE2有显著差异 不能合并使用 例4 16 用粉煤灰和煤矸石作原料制造粉煤灰砖的试验研究 试验指标是干坯的扯断力 105Pa 考虑3个因素 每个因素3个水平 具体参数水平如表4 47所示 解 选用L8 34 正交表做试验 每号试验生产出若干块干坯 采用重复取样的方法 每号试验取5块 测出结果列于表4 48右边 进行计算分析 找出最优方案 方差分析与计算见表4 49 4 7正交试验设计中的效应计算与指标的预估计 4 7 1正交设计的数据结构 在正交设计中 若以mt表示第t号试验各因素水平搭配所对应指标值xt的总体真值 以et表示第t号试验的随机误差 则有 这种数据结构称为Ln mk 型正交表上安排试验的数学模型 由于各正交表的具体情况不同 数据结构的具体形式不同 下面对几个常用正交表 分别写出它们的数据结构式 4 7 1 1L4 23 表上的数据结构为了方便 在表4 50中列出正交表L4 23 假设安排两个因素A B A安排在第1列 B安排在第2列 根据各试验号因素水平的不同 数据结构的形式为 x1 1 不考虑交互作用 其中 数据结构式见表4 50所示 2 考虑交互作用A B 数据结构式见表4 50所示 表4 50L4 23 正交表及数据结构式 mij表示在Ai Bj组合下指标值xt的真值 理论值 ai为因素A在第i水平时的效应 a1 a2 0 bi为因素B在第i水平时的效应 b1 b2 0 其中 ab ij为Ai Bj组合下交互作用的效应 ab 11 ab 12 0 ab 21 ab 22 0 4 7 1 2L8 27 表上的数据结构 安排4个2水平因素A B C D 1 不考虑交互作用数据结构式见表4 51所示 2 考虑交互作用A B C D分别在1 2 3 7列 两交互作用列应在3 5 6列 以A B为例 其余情况类似 见表4 51所示 4 7 1 3L9 34 表上的数据结构先列出正交表L9 34 如表4 52所示 1 不考虑交互作用假设安排3个因素A B C 分别安排在第1 2 3列 数据结构式见表4 52所示 表4 51L8 27 正交表及数据结构式 a1 a2 0 b1 b2 0 c1 c2 0 d1 d2 0 表4 52L9 34 正交表及数据结构式 2 考虑交互作用 因素A B L9 34 正交表的任意两列间的交互作用为另外两列 将A B安排在1 2列 则A B占3 4两列 数据结构式见表4 52 4 7 2正交设计中的效应计算 由下式 xt mt et t 1 2 3 n et是随机误差 我们要对mt作出估计 即求出mt的估计值 使得满足 由L4 23 正交表上的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论