反比例函数压轴难题.doc_第1页
反比例函数压轴难题.doc_第2页
反比例函数压轴难题.doc_第3页
反比例函数压轴难题.doc_第4页
反比例函数压轴难题.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考压轴题反比例函数一解答题(共30小题)1(2015邵阳)如图,已知直线y=x+k和双曲线y=(k为正整数)交于A,B两点(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求AOB的面积;(3)当k=1时,OAB的面积记为S1,当k=2时,OAB的面积记为S2,依此类推,当k=n时,OAB的面积记为Sn,若S1+S2+Sn=,求n的值2(2015宁波)如图1,点P为MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果APB绕点P旋转时始终满足OAOB=OP2,我们就把APB叫做MON的智慧角(1)如图2,已知MON=90,点P为MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,且APB=135求证:APB是MON的智慧角(2)如图1,已知MON=(090),OP=2若APB是MON的智慧角,连结AB,用含的式子分别表示APB的度数和AOB的面积(3)如图3,C是函数y=(x0)图象上的一个动点,过C的直线CD分别交x轴和y轴于A,B两点,且满足BC=2CA,请求出AOB的智慧角APB的顶点P的坐标3(2015梅州)如图,过原点的直线y=k1x和y=k2x与反比例函数y=的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA(1)四边形ABCD一定是四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2x10)是函数y=图象上的任意两点,a=,b=,试判断a,b的大小关系,并说明理由4(2015黄石)已知双曲线y=(x0),直线l1:y=k(x)(k0)过定点F且与双曲线交于A,B两点,设A(x1,y1),B(x2,y2)(x1x2),直线l2:y=x+(1)若k=1,求OAB的面积S;(2)若AB=,求k的值;(3)设N(0,2),P在双曲线上,M在直线l2上且PMx轴,求PM+PN最小值,并求PM+PN取得最小值时P的坐标(参考公式:在平面直角坐标系中,若A(x1,y1),B(x2,y2)则A,B两点间的距离为AB=)5(2015威海)如图1,直线y=k1x与反比例函数y=(k0)的图象交于点A,B,直线y=k2x与反比例函数y=的图象交于点C,D,且k1k20,k1k2,顺次连接A,D,B,C,AD,BC分别交x轴于点F,H,交y轴于点E,G,连接FG,EH(1)四边形ADBC的形状是;(2)如图2,若点A的坐标为(2,4),四边形AEHC是正方形,则k2=;(3)如图3,若四边形EFGH为正方形,点A的坐标为(2,6),求点C的坐标;(4)判断:随着k1、k2取值的变化,四边形ADBC能否为正方形?若能,求点A的坐标;若不能,请简要说明理由6(2015咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P试求PAD的面积的最大值;探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由7(2015常州)如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4点P是第一象限内反比例函数图象上的动点,且在直线AB的上方(1)若点P的坐标是(1,4),直接写出k的值和PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较PAQ与PBQ的大小,并说明理由8(2015玉林)已知:一次函数y=2x+10的图象与反比例函数y=(k0)的图象相交于A,B两点(A在B的右侧)(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由(3)当A(a,2a+10),B(b,2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D若=,求ABC的面积9(2015漳州)理解:数学兴趣小组在探究如何求tan15的值,经过思考、讨论、交流,得到以下思路:思路一 如图1,在RtABC中,C=90,ABC=30,延长CB至点D,使BD=BA,连接AD设AC=1,则BD=BA=2,BC=tanD=tan15=2思路二 利用科普书上的和(差)角正切公式:tan()=假设=60,=45代入差角正切公式:tan15=tan(6045)=2思路三 在顶角为30的等腰三角形中,作腰上的高也可以思路四 请解决下列问题(上述思路仅供参考)(1)类比:求出tan75的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(CAD)为45,求这座电视塔CD的高度;(3)拓展:如图3,直线y=x1与双曲线y=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由10(2014枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积11(2014徐州)如图,将透明三角形纸片PAB的直角顶点P落在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PBx于点C,PAy于点D,AB分别与x轴,y轴相交于点E、F已知B(1,3)(1)k=;(2)试说明AE=BF;(3)当四边形ABCD的面积为时,求点P的坐标12(2014淮安)如图,点A(1,6)和点M(m,n)都在反比例函数y=(x0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m1时,过点M作MPx轴,垂足为P,过点A作ABy轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由13(2014泰州)平面直角坐标系xOy中,点A、B分别在函数y1=(x0)与y2=(x0)的图象上,A、B的横坐标分别为a、b(1)若ABx轴,求OAB的面积;(2)若OAB是以AB为底边的等腰三角形,且a+b0,求ab的值;(3)作边长为3的正方形ACDE,使ACx轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD边与函数y1=(x0)的图象都有交点,请说明理由14(2014泉州)如图,直线y=x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1)(1)求该反比例函数的关系式;(2)设PCy轴于点C,点A关于y轴的对称点为A;求ABC的周长和sinBAC的值;对大于1的常数m,求x轴上的点M的坐标,使得sinBMC=15(2014春慈溪市期末)如图,直线y=x+1与x,y轴分别交于A、B两点,P(a,b)为双曲线y=(x0)上的一动点,PMx轴与M,交线段AB于F,PNy轴于N,交线段AB于E(1)求E、F两点的坐标(用a,b的式子表示);(2)当a=时,求EOF的面积(3)当P运动且线段PM、PN均与线段AB有交点时,探究:BE、EF、FA这三条线段是否能组成一个直角三角形?说明理由;EOF的大小是否会改变?若不变,求出EOF的度数,若会改变,请说明理由16(2014秋渝中区校级月考)如图,在平面直角坐标系中,已知矩形ABCD,E是BC上一点,AED=90,AB=6,SINAEB=,矩形ABCD的点B与O重合,BC在x轴上,现有一张硬纸片MGN,MGN=90,点M在x轴上,点G在ED上,NG=3,N与E重合现将MGN以每秒1个单位的速度沿EB方向在x轴上匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD方向向点D匀速移动,点Q为直线GN与线段AE的交点,连接QP,当点P到达终点D时,MGN和点P同时停止运动,设运动时间x秒(1)若反比例函数的图象经过点D,求该反比例函数的解析式(2)在整个运动过程中,设MGN与ABE重叠部分的面积为y,求y与x的函数关系式,并写出x的取值范围(3)在整个运动过程中,是否存在点P,使APQ为等腰三角形,若存在,求出x的值,若不存在,说明理由17(2013湖州)如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sinAOB=,反比例函数y=(k0)在第一象限内的图象经过点A,与BC交于点F(1)若OA=10,求反比例函数解析式;(2)若点F为BC的中点,且AOF的面积S=12,求OA的长和点C的坐标;(3)在(2)中的条件下,过点F作EFOB,交OA于点E(如图),点P为直线EF上的一个动点,连接PA,PO是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由18(2013镇江)通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到灵活运用这一知识解决问题如图,已知反比例函数的图象C与正比例函数y=ax(a0)的图象l相交于点A(2,2)和点B(1)写出点B的坐标,并求a的值;(2)将函数的图象和直线AB同时向右平移n(n0)个单位长度,得到的图象分别记为C和l,已知图象C经过点M(2,4)求n的值;分别写出平移后的两个图象C和l对应的函数关系式;直接写出不等式的解集19(2013义乌市)如图1所示,已知y=(x0)图象上一点P,PAx轴于点A(a,0),点B坐标为(0,b)(b0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q连接AQ,取AQ的中点为C(1)如图2,连接BP,求PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长20(2013盐城模拟)如图1,已知点A(a,0),B(0,b),且a、b满足,ABCD的边AD与y轴交于点E,且E为AD中点,双曲线经过C、D两点(1)求k的值;(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MNHT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明21(2013成都模拟)在平面直角坐标系中,函数y=(m0)的图象经过点A(1,4)、B(a,b),其中a1过点A作x轴的垂线,垂足为C;过点B作y轴的垂线,垂足为D,AC与BD相交于点M,连接AB、AD、BC、CD(1)求m的值;(2)求证:CDAB;(3)当AD=BC时,求直线AB的函数解析式22(2013柳州模拟)如图,在平面直角坐标系中,直线y=kx和双曲线在第一象限相交于点A(1,2),点B在y轴上,且ABy轴有一动点P从原点出发沿y轴以每秒1个单位的速度向y轴的正方向运动,运动时间为t秒(t0),过点P作PDy轴,交直线OA于点C,交双曲线于点D(1)求直线y=kx和双曲线的函数关系式;(2)设四边形CDAB的面积为S,当P在线段OB上运动时(P不与B点重合),求S与t之间的函数关系式;(3)在图中第一象限的双曲线上是否存在点Q,使以A、B、C、Q四点为顶点的四边形是平行四边形?若存在,请求出此时t的值和Q点的坐标;若不存在,请说明理由23(2013秋江岸区校级月考)如图,一次函数y=ax+b与反比例函数y=(x0)的图象交于点A、B,与x、y轴交于C、D,且满足+(a+)2=0(1)求反比例函数解析式;(2)当AB=BC时,求b的值;(3)如图2,当b=2时,连OA,将OA绕点O逆时针旋转60,使点A与点P重合,以点P为顶点作MPN=60,分别交直线AB和x轴于点M、N,求证:PM平分AMN24(2012北海)如图,在平面直角坐标系中有RtABC,A=90,AB=AC,A(2,0)、B(0,1)、C(d,2)(1)求d的值;(2)将ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B、C正好落在某反比例函数图象上请求出这个反比例函数和此时的直线BC的解析式;(3)在(2)的条件下,直线BC交y轴于点G问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由25(2012泰州)如图,已知一次函数y1=kx+b图象与x轴相交于点A,与反比例函数的图象相交于B(1,5)、C(,d)两点点P(m,n)是一次函数y1=kx+b的图象上的动点(1)求k、b的值;(2)设1m,过点P作x轴的平行线与函数的图象相交于点D试问PAD的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;(3)设m=1a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围26(2012淄博)如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4)(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;(3)连接OF,OE,探究AOF与EOC的数量关系,并证明27(2012广安模拟)如图所示,在同一直角坐标系xOy中,有双曲线,直线y2=k2x+b1,y3=k3x+b2,且点A(2,5),点B(6,n)在双曲线的图象上(1)求y1和y2的解析式;(2)若y3与直线x=4交于双曲线,且y3y2,求y3的解析式;(3)直接写出的解集28(2012南安市质检)如图,已知双曲线(k为常数)与直线l相交于A、B两点,第一象限内的点M(点M在A的左侧)是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论