




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南各市2012年中考数学试题分类解析汇编专题4:图形的变换1、 选择题1. (2012湖南常德3分)图所给的三视图表示的几何体是【 】 a. 长方体 b. 圆柱 c. 圆锥 d. 圆台【答案】b。【考点】简单几何体的三视图。【分析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱。故选b。2. (2012湖南常德3分)若图1中的线段长为1,将此线段三等分,并以中间的一段为边作等边三角形,然后去掉这一段,得到图2,再将图2中的每一段作类似变形,得到图3,按上述方法继续下去得到图4,则图4中的折线的总长度为【 】 a. 2 b. c. d. 【答案】d。【考点】分类归纳(图形的变化类),等边三角形的性质。【分析】寻找规律,从两方面考虑: (1)每个图形中每一条短线段的长:图2中每一条短线段的长为,图3中每一条短线段的长为,图4中每一条短线段的长为。 (2)每个图形中短线段的根数:图2中有4根,图3中有16根,图4中有64根。 图4中的折线的总长度为。故选d。【推广到一般,图n中的折线的总长度为】3. (2012湖南张家界3分)下面四个几何体中,左视图是四边形的几何体共有【 】a1个b2个c3个d4个【答案】b。【考点】简单几何体的三视图。【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个。故选b。4. (2012湖南岳阳3分)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体a向右平移2个单位,向后平移1个单位后,所得几何体的视图【 】a主视图改变,俯视图改变 b主视图不变,俯视图不变c主视图不变,俯视图改变 d主视图改变,俯视图不变【答案】c。【考点】简单组合体的三视图。【分析】主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断:根据图形可得,图及图的主视图一样,俯视图不一样,即主视图不变,俯视图改变故选c。5. (2012湖南岳阳3分)如图,两个边长相等的正方形abcd和efgh,正方形efgh的顶点e固定在正方形abcd的对称中心位置,正方形efgh绕点e顺时针方向旋转,设它们重叠部分的面积为s,旋转的角度为,s与的函数关系的大致图象是【 】abcd6. (2012湖南郴州3分)如图是由5个相同的小正方体组成的立体图形,它的俯视图是【 】 a b c d【答案】a。【考点】简单组合体的三视图。【分析】找到从上面看所得到的图形即可:从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形。故选a。7. (2012湖南娄底3分)如图,矩形绕它的一条边mn所在的直线旋转一周形成的几何体是【 】a b c d 【答案】c。【考点】点、线、面、体。【分析】矩形绕一边所在的直线旋转一周得到的是圆柱。故选c。8. (2012湖南衡阳3分)一个圆锥的三视图如图所示,则此圆锥的底面积为【 】a30cm2 b25cm2 c50cm2 d100cm2【答案】b。【考点】由三视图判断几何体,圆锥的计算。【分析】根据主视图与左视图可以得到:圆锥的底面直径是10cm,利用圆的面积公式即可求解:根据主视图与左视图可以得到:圆锥的底面直径是10cm,则底面半径是5cm。则此圆锥的底面积为:52=25cm2。故选b。9. (2012湖南湘潭3分)如图,从左面看圆柱,则图中圆柱的投影是【 】a圆 b矩形 c梯形 d圆柱【答案】b。【考点】平行投影。【分析】如图所示圆柱从左面看是矩形,故选b。10.(2012湖南永州3分)如图所示,下列水平放置的几何体中,俯视图是矩形的是【 】a b c d【答案】a。【考点】简单几何体的三视图。【分析】俯视图是从物体的上面看得到的视图,仔细观察各个简单几何体,便可得出结论:a、圆柱的俯视图为矩形,故本选项正确;b、圆锥的俯视图为圆,故本选项错误;c、三棱柱的俯视图为三角形,故本选项错误;d、三棱锥的俯视图为三角形,故本选项错误。故选a。11.(2012湖南永州3分)如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是【 】a0 b1 c2 d3【答案】d。【考点】分类归纳(图形的变化类)。【分析】寻找规律:因棋子移动了k次后走过的总角数是1+2+3+k=k(k+1), 当k=1时,棋子移动的总角数是1,棋子移动到第1号角; 当k=2时,棋子移动的总角数是3,棋子移动到第3号角;当k=3时,棋子移动的总角数是6,棋子移动到第6号角;当k=4时,棋子移动的总角数是10,棋子移动到第107=3号角;当k=5时,棋子移动的总角数是15,棋子移动到第1527=1号角;当k=6时,棋子移动的总角数是21,棋子移动到第2137=0号角;当k=7时,棋子移动的总角数是28,棋子移动到第2847=0号角。发现第2,4,5角没有停棋。当k=7nt(n0,1t7,都为整数)时,棋子移动的总角数是,中和是连续数,是7的倍数。是7的倍数。棋子移动的位置与k=t移动的位置相同。故第2,4,5格没有停棋,即这枚棋子永远不能到达的角的个数是3。故选d。二填空题1. (2012湖南张家界3分)已知线段ab=6,cd是ab上两点,且ac=db=1,p是线段cd上一动点,在ab同侧分别作等边三角形ape和等边三角形pbf,g为线段ef的中点,点p由点c移动到点d时,g点移动的路径长度为 【答案】2。【考点】动点问题。等边三角形的性质,平行的判定,平行四边形的判定和性质,三角形中位线定理。【分析】如图,分别延长ae、bf交于点h,连接hd,过点g作mnab分别交ha、hd于点m、n。ape和pbf是等边三角形,a=fpb=60,b=epa=60。ahpf,bhpe。四边形epfh为平行四边形。ef与hp互相平分。点g为ef的中点,点g也正好为ph中点,即在点p的运动过程中,点g始终为ph的中点。点g的运行轨迹为hcd的中位线mn,ab=6, ac=db=1,cd=611=4。mn=2,即g的移动路径长为2。2. (2012湖南岳阳3分)圆锥底面半径为,母线长为2,它的侧面展开图的圆心角是 【答案】900。【考点】圆锥的计算。1052629【分析】圆锥底面半径是,圆锥的底面周长为。设圆锥的侧面展开的扇形圆心角为n,由解得n=90。3. (2012湖南岳阳3分)图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m= (用含n的代数式表示)【答案】。【考点】分类归纳(图形和数字的变化类)。【分析】寻找圆中下方数的规律: 第一个圆中,8=24=(311)(311); 第二个圆中,35=57=(321)(321);第三个圆中,80=810=(331)(331);第n个圆中,。4. (2012湖南娄底4分)如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“”,共 个【答案】503。【考点】分类归纳(图形的变化类)。【分析】由图知4个图形一循环,因为2012被4整除,从而确定是共有第503。三、解答题1. (2012湖南益阳12分)已知:如图1,在面积为3的正方形abcd中,e、f分别是bc和cd边上的两点,aebf于点g,且be=1(1)求证:abebcf;(2)求出abe和bcf重叠部分(即beg)的面积;(3)现将abe绕点a逆时针方向旋转到abe(如图2),使点e落在cd边上的点e处,问abe在旋转前后与bcf重叠部分的面积是否发生了变化?请说明理由【答案】(1)证明:四边形abcd是正方形,abe=bcf=90,ab=bc。abf+cbf=90。aebf,abf+bae=90。bae=cbf。在abe和bcf中,abe=bcf,ab=bc,bae=cbf,abebcf(asa)。 (2)解:正方形面积为3,ab=。在bge与abe中,gbe=bae,egb=eba=90,bgeabe。又be=1,ae2=ab2+be2=3+1=4。(3)解:没有变化。理由如下:ab=,be=1,。bae=30。ab=ad,abe=ade=90,ae= ae,rtabertabertade,dae=bae=bae=30。ab与ae在同一直线上,即bf与ab的交点是g。设bf与ae的交点为h,则bag=hag=30,而agb=agh=90,ag= ag,baghag。 abe在旋转前后与bcf重叠部分的面积没有变化。【考点】正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,解直角三角形。【分析】(1)由四边形abcd是正方形,可得abe=bcf=90,ab=bc,又由aebf,由同角的余角相等,即可证得bae=cbf,然后利用asa,即可判定:abebcf。(2)由正方形abcd的面积等于3,即可求得此正方形的边长,由在bge与abe中,gbe=bae,egb=eba=90,可证得bgeabe,由相似三角形的面积比等于相似比的平方,即可求得答案。(3)由正切函数,求得bae=30,易证得rtabertabertade,可得ab与ae在同一直线上,即bf与ab的交点是g,然后设bf与ae的交点为h,可证得baghag,从而证得结论。2. (2012湖南岳阳8分)(1)操作发现:如图,d是等边abc边ba上一动点(点d与点b不重合),连接dc,以dc为边在bc上方作等边dcf,连接af你能发现线段af与bd之间的数量关系吗?并证明你发现的结论(2)类比猜想:如图,当动点d运动至等边abc边ba的延长线上时,其他作法与(1)相同,猜想af与bd在(1)中的结论是否仍然成立?(3)深入探究:如图,当动点d在等边abc边ba上运动时(点d与点b不重合)连接dc,以dc为边在bc上方、下方分别作等边dcf和等边dcf,连接af、bf,探究af、bf与ab有何数量关系?并证明你探究的结论如图,当动点d在等边边ba的延长线上运动时,其他作法与图相同,中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论【答案】解:(1)af=bd。证明如下:abc是等边三角形(已知),bc=ac,bca=60(等边三角形的性质)。同理知,dc=cf,dcf=60。bcadca=dcfdca,即bcd=acf。在bcd和acf中,bc=ac,bcd=acf,dc=cf,bcdacf(sas)。bd=af(全等三角形的对应边相等)。(2)af=bd仍然成立。(3)af+bf=ab。证明如下:由(1)知,bcdacf(sas),则bd=af。同理bcfacd(sas),则bf=ad。af+bf=bd+ad=ab。中的结论不成立,新的结论是af=ab+bf。证明如下:在bcf和acd中,bc=ac,bc f=acd,fc=dc,bcfacd(sas)。bf=ad(全等三角形的对应边相等)。又由(2)知,af=bd,af=bd=ab+ad=ab+bf,即af=ab+bf。3. (2012湖南怀化10分)如图1,四边形abcd是边长为的正方形,长方形aefg的宽,长将长方形aefg绕点a顺时针旋转15得到长方形amnh (如图2),这时bd与mn相交于点o(1)求的度数;(2)在图2中,求d、n两点间的距离;(3)若把长方形amnh绕点a再顺时针旋转15得到长方形artz,请问此时点b在矩形artz的内部、外部、还是边上?并说明理由图1 图2【答案】解:(1)如图,设ab与mn相交于点k,根据题意得:bam=15, 四边形amnh是矩形,m=90。akm=90bam=75。bko=akm=75。,四边形abcd是正方形,abd=45。dom=bko+abd=75+45=120。(2)连接an,交bd于i,连接dn,nh=,ah=,h=90,。han=30。an=2nh=7。由旋转的性质:dah=15,dan=45。dac=45,a,c,n共线。四边形abcd是正方形,bdac。ad=cd=,。ni=anai=73=4。在rtdin中,。(3)点b在矩形artz的外部。理由如下:如图,根据题意得:bar=15+15=30。r=90,ar= ,。,ab= 。点b在矩形artz的外部。【考点】旋转的性质,矩形的性质,正方形的性质,勾股定理,锐角三角函数定义,特殊角的三角函数值,实数的大小比较。【分析】(1)由旋转的性质,可得bam=15,即可得okb=aom=75,又由正方形的性质,可得abd=45,然后利用外角的性质,即可求得dom的度数。(2)首先连接am,交bd于i,连接dn,由特殊角的三角函数值,求得han=30,又由旋转的性质,即可求得dan=45,即可证得a,c,n共线,然后由股定理求得答案。(3)在rtark中,利用三角函数即可求得ak的值,与ab比较大小,即可确定b的位置。4. (2012湖南娄底10分)如图,在abc中,ab=ac,b=30,bc=8,d在边bc上,e在线段dc上,de=4,def是等边三角形,边df交边ab于点m,边ef交边ac于点n(1)求证:bmdcne;(2)当bd为何值时,以m为圆心,以mf为半径的圆与bc相切?(3)设bd=x,五边形anedm的面积为y,求y与x之间的函数解析式(要求写出自变量x的取值范围);当x为何值时,y有最大值?并求y的最大值【答案】解:(1)证明:ab=ac,b=30,b=c=30。 def是等边三角形,fde=fed=60。科网mdb=nec=120。bmd=b=c=cne=30。bmdcne。(2)过点m作mhbc,以m为圆心,以mf为半径的圆与bc相切,mh=mf。设bd=x,def是等边三角形,fde=60。b=30,bmd=fdeb=6030=30=b。dm=bd=x。mh=mf=dfmd=4x。在rtdmh中,sinmdh=sin60=,.com解得:x=168。当bd=168时,以m为圆心,以mf为半径的圆与bc相切。(3)过点m作mhbc于h,过点a作akbc于k,ab=ac,bk=bc=8=4b=30,ak=bktanb=4。sabc=bcak=8。由(2)得:md=bd=xmh=mdsinmdh=x,sbdm=xx=x2。def是等边三角形且de=4,bc=8,ec=bcbdde=8x4=4x。bmdcne,sbdm:scen=。scen=(4x)2。y=sabcscensbdm=x2(4x)2=x2+2x+=(x2)2+(0x4)。当x=2时,y有最大值,最大值为。【考点】等腰(边)三角形的性质,相似三角形的判定和性质,二次函数的最值,切线的性质,锐角三角函数定义,特殊角的三角函数值。【分析】(1)由ab=ac,b=30,根据等边对等角,可求得c=b=30,又由def是等边三角形,根据等边三角形的性质,易求得mdb=nec=120,bmd=b=c=cne=30,即可判定:bmdcne。(2)首先过点m作mhbc,设bd=x,由以m为圆心,以mf为半径的圆与bc相切,可得mh=mf=4x,由(1)可得md=bd,然后在rtdmh中,利用正弦函数,即可求得答案。(3)首先求得abc的面积,继而求得bdm的面积,然后由相似三角形的性质,可求得bcn的面积,再利用二次函数的最值问题,即可求得答案。5. (2012湖南株洲6分)如图,在矩形abcd中,ab=6,bc=8,沿直线mn对折,使a、c重合,直线mn交ac于o(1)求证:comcba; (2)求线段om的长度【答案】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年袋装腹膜透析液项目建议书
- 2025年恩施货车从业资格证考什么
- 商学院安全教育材料
- 2025年济南货运从业资格证考试题及答案解析
- 2025年高速、超硬精密刀具项目建议书
- 2025年四川货运从业资格证模拟试题题库及答案
- 2025年果洛货运上岗证模拟考试试题
- 文化旅游中心空间陈设
- 宝鸡项目2023年07月施工月报
- 2024年4月工业厂房地坪承载测试验收合同
- GB/T 20424-2025重有色金属精矿产品中有害元素的限量规范
- 2025年兰考三农职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025电动自行车集中充电设施第2部分:充换电服务信息交换
- 输油管道安全培训
- 2025美国急性冠脉综合征(ACS)患者管理指南解读课件
- 统编历史七年级下册(2024版)第7课-隋唐时期的科技与文化【课件】f
- 2025年河南省高校毕业生“三支一扶”招募1100人高频重点模拟试卷提升(共500题附带答案详解)
- 2025年国家林业局西北林业调查规划设计院招聘4人历年高频重点模拟试卷提升(共500题附带答案详解)
- 桥梁检测报告模板
- 2025年浪潮数字企业技术有限公司招聘笔试参考题库含答案解析
- 课时精讲14-物质的聚集状态与晶体的常识(学生版)
评论
0/150
提交评论