车床和铣床机械工艺夹具装备课程毕业设计外文文献翻译@中英文翻译@外文翻译_第1页
车床和铣床机械工艺夹具装备课程毕业设计外文文献翻译@中英文翻译@外文翻译_第2页
车床和铣床机械工艺夹具装备课程毕业设计外文文献翻译@中英文翻译@外文翻译_第3页
车床和铣床机械工艺夹具装备课程毕业设计外文文献翻译@中英文翻译@外文翻译_第4页
车床和铣床机械工艺夹具装备课程毕业设计外文文献翻译@中英文翻译@外文翻译_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中国地质大学长城学院 本科毕业设计外文资料翻译 系 别: 工程技术系 专 业: 机械设计制造及其自动化 姓 名: 赵政阔 学 号: 05211619 2015 年 4 月 17 日 外文资料翻译译文 车床和铣床 一家 工厂 拥有一台铣床和车床能加工几乎任何类型的大小适合的产品。 设计主要是做把基本的机器称为车床,镗。车削很少在其他种类的机床上进行,而不可以用同样的设 备做。由于车床可以做无聊,面对,钻,铰除将其通用性,允许多个操作将工件在一次安装完成。这说明各种车床的更广泛的应用于制造比任何其他机床。 车床已经存在了超过二千年。现代车床可以追溯到大约 1797,当亨利 莫德斯利发明了一种具有丝杠。它提供了控制,工具的机械进给。这个聪明的英国人还发明了一个可以连接主轴和丝杠可以切削螺纹变速齿轮系统。 车床结构。车床的主要部件是画面的框图描述。这些都是床,主轴箱,尾座组件,拖板组件,快速更换变速箱、丝杠和光杠。 床身是车床的背骨。它通常是由归一化的老年灰铸铁或球墨铸铁提供了重 ,刚性框架,所有其他基本部件都安装在。两组平行,纵向方面,内部和外部的,包含在床上,通常在上面。一些制造商使用一个倒 V 形的所有四个方面,而有些人则利用一个倒 V 和一个或两个平面导轨。由于其他的部件安装和 /或移动要经过精密加工,确保精度的对齐方式。同样,适当的预防应采取的操作车床,以确保道路不损坏。在导轨上的任何误差,通常意味着整个机床的精度遭到破坏。大多数现代车床的导轨淬火处理提供更大的抗磨损表面。 主轴箱安装在固定位置的内侧导轨床身一端。它提供动力,意味着以不同的速度旋转的工作。它包括,从本质上讲,一个空心 轴,安装在精密轴承,和一套传动齿轮 类似于卡车传输 通过主轴可以在不同速度转动。大多数车床提供从八到十八的速度,通常以几何比例,而且在现代机床的速度可以从两到四杆只得到。一个不断增长的趋势是通过电气或机械传动无级变速。 由于机床的精度在很大程度上取决于主轴,它是重型施工和安装在重型轴承,圆锥滚子或球型通常预装。 长剖面孔延伸通过主轴使长棒料可以通过它。这个洞的大小是车床的一个重要尺寸,因为它决定了棒料的最大尺寸,可加工的材料时,必须通过主轴。 主轴的内端伸出齿轮箱中安装各种型号的卡盘,工具面板,在它的狗 盘。而小车床通常采用螺纹部分的夹头拧,很多大车床使用凸轮锁或钥匙动圆锥。这提供了一个大直径锥形保证卡盘的精确对准,和一种机制,使得卡盘或花盘被锁定或解锁位置不用旋转这些笨重的附件的必要性。 电主轴由电动机通过 V 带或无声链传动。大多数现代车床有汽车从 5 到 15 马力在高速切削硬质合金和陶瓷工具提供充足的电力。 尾座组件由三部分组成,从本质上讲。较低的铸造适合在床内的方法和纵向滑动上,用在任意位置上夹紧的装置全部组装。上的铸造适合低的一个可横向移动时对某些类型的输入方式。横向移动使尾座 与主轴箱主轴对准了车削圆锥的方 法。组件的第三部分是尾架套筒。这是一个中空的圆柱体,通常 2 到 3 英寸直径,可以移动几英寸在纵向上铸造通过手轮和螺杆装置。套筒的开口端终止于莫氏锥度的车削中心,或各种工具如钻头,可以举行。刻度尺,几英寸长,通常是刻在外面的羽毛来帮助其运动控制和移出。锁定装置可以使夹紧套筒在任何需要的位置。 托架组件提供安装和移动切削工具的方法。车厢是一个相对平坦的 H 形铸件,睡在床上的外套移动方式。车厢的横杠上包含方式导轨安装,可以由一个螺旋进给,是由一个小的手轮和刻度盘控制装置移动。通过交叉滑动装置设置在垂直于旋转轴的工作方向移动车刀。 大多数车床刀架上安装在刀架。这包括底座,底座安装在横拖板上,可绕一垂直轴,和上铸造。上刀架安装在底座上,可以前后移动,通过手轮和刻度盘控制一个短丝杠的方式。 手工和动力驱动大拖板,和十字滑动力的运动,是由机制内的围裙,附着到马车前。沿床马车手动运动是通过转动手轮上的围裙前面的影响,这是面向背面齿轮。这个小齿轮接合架装在床前面的上边缘在一个倒置的位置。 可以将动力传递给运输和跨幻灯片,设置旋转杆。饲料杆,其中包含一个键槽在大多数它的长度,通过两倒锥齿轮和键控他们。无论是小齿轮凸轮被带进一个交配的锥 齿轮啮合的换向手柄的围裙前面的手段,从而为“前进”或“反向”权力的马车。适当的离合器连接的齿轮齿条或横向滑动螺钉提供运输或横拖板横向运动的纵向运动。 对于螺纹加工,第二纵向传动丝杠提供了。而车厢的运动时,带动丝杆机构发生通过摩擦离合器打滑是可能的,通过丝杠的运动是由一个直接,围裙和丝杠之间的机械连接。这是由一个螺母劈开了。由一个夹杆上的围裙前面的手段,对开螺母可以围绕合丝杠。当对开螺母闭合时,马车沿着丝杠直接驱动没有出现打滑的可能性。 现代车床有一个变速齿轮箱。该变速器输入端,通过合适的齿轮传动驱动由车床主轴。该齿轮箱的输出端连接到光杆和丝杆。因此,通过齿轮传动,从主轴导致快速更换变速箱,再带动丝杠和光杠,然后马车,刀具可以移动一个特定的距离,无论是纵向或横向 。 一些老式的和一些便宜的车床,一个或两个齿轮在传动轴和变速齿轮箱之间必须改变,以获得全方位的线程和饲料。 铣削是一种基本的加工过程中,表面被逐渐形成并从工件因为这是美联储为垂直于旋转刀具的刀轴方向去除切屑材料产生。在某些情况下,工件是固定的,刀是美联储的工作。在大多数情况下,使用多齿刀具,金属去除率高,并且经常所需的表面是通过在一个单一的工作了。 在铣 削加工中使用的刀具称为铣刀。它通常是由一个圆柱体绕其轴线旋转并且包含等距周围的牙齿,间歇性接触和切割工件。在某些情况下,牙齿伸出的一端或两端的气缸。 由于铣削提供了快速去除金属和能产生良好的表面光洁度,故特别适合大规模生产的工作,和优秀的铣床已为此目的而开发的。然而,非常精确的多功能通用性铣床也已经广泛应用于车间和工具模具工作。一家拥有一台铣床和车床能加工几乎任何类型的大小适合的产品。 铣削操作类型。铣削操作可分为两大类,其中有几个变化: 基本概念的周边和端面铣削图外围铣削通常具有水平主轴的机器进行说明,而 铣刀在水平和垂直主轴的机器做的。 在铣削表面生成。表面可以采用两种完全不同的方法在图注意了铣削刀具旋转方向与工件进给铣削产生的描述,而在顺铣轮在同一方向的饲料。如图所示,切屑形成的方法是完全不同的两种情况。在逆铣的髋关节是非常薄的开始,其中齿首先接触的工作,并增加厚度,将最大的齿叶的工作。刀具有推动工作,把它上升到表。这个动作会消除进给螺杆和螺母的铣床工作台和结果在一个光滑的切割松动任何效果。然而,行动也趋于宽松的工作由夹紧装置,夹紧必须采用更大的报酬。此外,生成的表面光洁度主要取决于切削刃的锋利。 顺铣时 ,最大切屑厚度出现在接近在该点的齿接触的工作。由于相对运动能把工件向刀具,在进给螺杆可能产生的松动必须如果采用顺铣法消除。它不应该试图在机器,是不适合这个类型的铣削。在如同物质产量大约在切线方向上的齿啮合的一端,有更少的趋势,加工表面痕时使用比逆铣。另一个可考虑的优势,顺铣切削力趋于将工作与机床工作台,允许较低的夹紧力可以。这是特别有利于加工薄工件或进行强力切削。 有时,顺铣的弱点是,刀齿撞击工件表面在每个芯片的开始。当工件表面坚硬,像铸件,这可能会导致牙齿很快变钝。 铣刀可分几个方面。一种方法是将它们分为 两大类,如下: 1.仿形铣刀每齿上磨了一个很小的土地上的切削刃的背面浮雕。切削刃可以是直的或弯曲的。 2.在形式或凸轮减轻刀具截面各齿在切削刃偏心曲线,从而提供救济。偏心后角的各部分,与切削刃平行,必须具有相同的轮廓切削刃。这类刀具磨削的齿面磨,与轮廓的切割边缘保持不变。 另一个有用的分类方法是根据铣刀安装的方法。乔木刀是一个中心孔,这样他们可以安装在心轴。带柄铣刀有一锥柄或直柄轴。那些锥形柄可以直接安装在铣床的主轴上,而直柄刀具装在卡盘。平面铣刀通常用螺栓固定在刀轴的端铣刀的类型。平铣刀圆柱或圆盘状,边缘 上有直的或螺旋形的牙齿。他们是用于铣削平面。这种类型的操作称为平面或平面铣削。在一个螺旋铣刀每齿啮合工作逐步,通常超过一齿切在一个给定的时间。这减少了震动和抖动的倾向和促进一个光滑的表面。因此,这种类型的铣刀通常优于与直齿。侧铣刀类似平面铣刀除了齿径向延伸的一端或两端向中心筒。牙齿可以是直的或螺旋形的。经常这些刀具相对较窄,具有盘形的形状。两个或两个以上的侧铣刀通常间隔对乔木进行同时,平行切割,称为跨铣 。 槽铣刀是由两个刀类似于米尔斯身边,但是作为一个单元进行铣槽。两刀具调整到所需宽度之间插入垫片。 错齿铣刀是狭窄的圆柱形铣刀具有交错的牙齿,和交替齿具有相反的螺旋角。他们地切只在外围,但每个齿也有芯片清除地面上的凸侧。这些刀有一个免费的切割作用,使得它们在铣深槽特别有效。金属锯薄,平面铣刀,一般从 1 / 32 到 3 / 16 英寸厚,有其两面稍“抛出”提供间隙,防止结合。他们通常有牙每英寸直径比普通铣刀用于铣削深多,窄槽和切断操作。 外文原文 LATHES & MILLING A shop that is equipped with a milling machine and an engine lathe can machine almost any type of product of suitable size. The basic machines that are designed primarily to do turning, facing and boring are called lathes. Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathe can do boring, facing, drilling, and reaming in addition to turning, their versatility permits several operations to be performed with a single setup of the workpiece. This accounts for the fact that lathes of various types are more widely used in manufacturing than any other machine tool. Lathes in various forms have existed for more than two thousand years. Modern lathes date from about 1797, when Henry Maudsley developed one with a leads crew. It provided controlled, mechanical feed of the tool. This ingenious Englishman also developed a change gear system that could connect the motions of the spindle and leadscrew and thus enable threads to be cut. Lathe Construction. The essential components of a lathe are depicted in the block diagram of picture. These are the bed, headstock assembly, tailstock assembly, carriage assembly, quick-change gearbox, and the leadscrew and feed rod. The bed is the back bone of a lathe. It usually is made of well-normalized or aged gray or nodular cast iron and provides a heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways,whereas others utilize one inverted V and one flat way in one or both sets. Because several other components are mounted and/or move on the ways they must be made with precision to assure accuracy of alignment. Similarly, proper precaution should betaken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed. The ways on most modern lathes are surface hardened to offer greater resistance to wear and abrasion. The headstock is mounted in a fixed position on the inner ways at one end of the lathe friction clutch in which slippage is possible, motion through the lead screw is by a direct,mechanical connection between the apron and the lead screw. This is achieved by a split nut. By means of a clamping lever on the front of the apron, the split nut can be closed around the lead screw. With the split nut closed, the carriage is moved along the lead screw by direct drive without possibility of slippage. Modern lathes have a quick-change gear box. The input end of this gearbox is driven from the lathe spindle by means of suitable gearing. The out put end of the gear box is connected to the feed rod and lead screw. Thus, through this gear train, leading from the spindle to the quick-change gearbox, thence to the lead screw and feed rod, and then to the carriage, the cutting tool can be made to move a specific distance, either longitudinally or transversely, for each revolution of the spindle. A typical lathe provides, through the feed rod,forty-eight feeds ranging from 0.002 inch to0.118 inch per revolution of the spindle, and,through the lead screw , leads for cutting forty-eight different threads from 1.5 to 92perinch.On some older and some cheaper lathes, one or two gears in the gear train between the spindle and the change gear box must be changed in order to obtain a full range of threads and feeds. Milling is a basic machining process in which the surface is generated by the progressive formation and removal of chips of material from the workpiece as it is fed to a rotating cutter in a direction perpendicular to the axis of the cutter. .In some cases the workpiece is stationary and the cutter is fed to the work. In most instances a multiple-tooth cutter is used so that the metal removal rate is high, and frequently the desired surface is obtained in a single pass of the work. The tool used in milling is known as a milling cutter. It usually consists of a cylindrical body which rotates on its axis and contains equally spaced peripheral teeth that intermittently engage and cut the workpiece. In some cases the teeth extend part way across one or both ends of the cylinder. Because the milling principle provides rapid metal removal and can produce good surface finish, it is particularly well-suited for mass-production work, and excellent milling machines have been developed for this purpose. However, very accurate and versatile milling machines of a general-purpose nature also have been developed that are widely used in job-shop and tool and die work. A shop that is equipped with a milling machine and an engine lathe can machine almost any type of product of suitable size. Types of Milling Operations. Milling operations can be classified into two broad categories, each of which has several variations: The basic concepts of peripheral and face milling are illustrated in Fig. Peripheral milling operations usually are performed on machines having horizontal spindles, whereas face milling is done on both horizontal-and vertical-spindle machines. Surface Generation in Milling. Surfaces can be generated in milling by two distinctly different methods depicted in Fig. Note that in up milling the cutter rotates against the direction of feed the workpiece, whereas in down milling the rotation is in the same direction as the feed .As shown in Fig., the method of chip formation is quite different in the two cases. In up milling the c hip is very thin at the beginning, where the tooth first contacts the work,and increases in thickness, be-coming a maximum where the tooth leaves the work. The cutter tends to push the work along and lift it upward from the table. This action tends to eliminate any effect of looseness in the feed screw and nut of the milling machine table and results in a smooth cut. However, the action also tends to loosen the work from the clamping device so that greater clamping forcers must be employed. In addition, the smoothness of the generated surface depends greatly on the sharpness of the cutting edges. In down milling, maximum chip thickness occurs close to the point at which the tooth contacts the work. Because the relative motion tends to pull the workpiece into the cutter, all possibility of looseness in the table feed screw must be eliminated if down milling is to be used. It should never be attempted on machines that are not designed for this type of milling. In as mush as the material yields in approximately a tangential direction at the end of the tooth engagement, there is much less tendency for the machined surface to show tooth marks than when up milling is used. Another consider able advantage of down milling is that the cutting force tends to hold the work against the machine table, permitting lower clamping force to be employed. This is particularly advantageous when milling thin workpiece or when taking heavy cuts. Sometimes a disadvantage of down milling is that the cutter teeth strike against the surface of the work at the beginning of each chip. When the workpiece has a hard surface,such as castings do, this may cause the teeth to dull rapidly. Milling Cutters. Milling cutters can be classified several ways. One method is to group them into two broad classes, based on tooth relief, as follows: 1. Profile-cutters have relief provided on each tooth by grinding a small land back of the cutting edge. The cutting edge may be straight or curved. 2.In form or cam-relieved cutters the cross section of each tooth is an eccentric curve behind the cutting edge, thus providing relief. All sections of the eccentric relief, parallel with the cutting edge, must have the same contour as the cutting edge. Cutters of this type are sharpened by grinding only the face of the teeth, with the contour of the cutting edge thus remaining unchanged. Another useful method of classification is according to the method of mounting the cutter. Arbor cutters are those that have a center hole so they can be mounted on an arbor. Shank cutters have either tapered or straight integral shank. Those with tapered shanks can be mounted directly in the milling machine spindle, whereas straight-shank cutters are held in a chuck. Facing cutters usually are bolted to the end of a stub arbor.Types of Milling Cutters. Plain milling cutters are cylindrical or disk-shaped, having straight or helical teeth on the periphery. They are used for milling flat surfaces. This type of operation is called plain or slab milling. Each tooth in a helical cutter engages the work gradually, and usually more than one tooth cuts at a given time. This reduces shock and chattering tendencies and promotes a smoother surface. Consequently,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论