全等三角形性质与判定复习课.doc_第1页
全等三角形性质与判定复习课.doc_第2页
全等三角形性质与判定复习课.doc_第3页
全等三角形性质与判定复习课.doc_第4页
全等三角形性质与判定复习课.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题: 全等三角形的性质与判定复习课青林乡中学 林文革一、教学目标1.进一步掌握三角形全等的条件和性质;会应用全等三角形的性质与判定解决有关问题.2.在题组训练的过程中,引导学生总结出全等三角形解题的模型,培养学生归纳总结的能力,使学生体会数形结合思想、转化思想在解决问题中的作用.3.培养学生把已有的知识建立在联系的思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。二、教学重难点重点:全等三角形性质与判定的应用.难点:能理解运用三角形全等解题的基本过程,并能形成解题模型.三、教具准备多媒体课件,三角尺4、 教学过程活动1 创设情境,引出课题某同学把一块三角形玻璃打碎成三片,现在他只需带上第 块就可配到与原来一样的三角形玻璃.123 师:上述问题实质是判断三角形全等需要什么条件的问题.今天我们这节课来复习全等三角形的性质与判定.(引出课题)活动2 反思回顾,检索要点师:全等三角形还有哪些判定方法? SAS ASA AAS SSS 判定 全等三角形 性质 对应边相等 对应角相等(板书上面内容)活动3 基础训练,强化知识1、 如图,ABCADE则AB= _E=_若BAE=120,BAD=40,则 BAC=_.学生交流讨论:明白全等三角形的对应边相等,对应角相等.2、 如图,在ABC与DEF中,如果AB=DE,BE=CF,只要加上_ = _ 就可证明ABCDEF规律总结:已知三角形的两边对应相等可选择SAS或SSS构造两个三角形全等.3、 如图,已知AB/DE,且AB=DE,请你只添加一个条件,使ABCDEF,你添加的条件是_ 规律总结:已知三角形的一边一角对应相等:可选择SAS、ASA、AAS构造两个三角形全等活动4 火眼金睛 找(造)等边例1如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F求证:ABFEDF;1、 在这两个三角形中有哪些相等的边?你是怎么分析的?2、 在学生分析的基础上教师点评.例2:如图,点D在等边三角形ABC的边AB上,延长BC至点E使EC=AD,连接DE交AC于点F,求证FD=FE.1、 教师用几何画板演示将CEF和ADF分别绕点F旋转180,分别与AC或AC的延长线交于点G、h.问:DG与CE平行吗?说说你的理由.问:EH与AD平行吗?谈谈你的依据.AD=DG? CE=EH?2、 学生自由讨论3、 指明学生上台板书.活动归纳总结 提高认识:结合本节课的学习,谈谈我们复习了哪些知识?你积累了哪些解题经验?活动7 推荐作业,补充升华练习1、如图,在下列四个条件中:AB=DC;BE=CE;B=C;BAE=CDE.请选出两个作为条件,得出AED是等腰三角形并加以证明.(写出一个即可) 已知_,求证:AED是等腰三角形练习2、已知:如图,AB=AE,BC=ED,B=E,点F是CD的中点.求证:AFCD. 问题与情境师生互动媒体使用与设计意图活动1 创设情境,引出课题(2分钟).某同学把一块三角形玻璃打碎成三片,现在他只需带上第 块就可配到与原来一样的三角形玻璃.123 师:上述问题实质是判断三角形全等需要什么条件的问题.今天我们这节课来复习全等三角形.(引出课题)【教师活动】1.创设情境,引出课题.2.板书课题.【学生活动】独立思考,并小组交流意见.【设计意图】让学生在情境中明白这节课学习的重点.【媒体应用】出示课题.活动2 反思回顾,检索要点(2分钟).请同学们对本章学过的基础知识进行梳理:【教师活动】教师引导学生回顾知识.【学生活动】回顾知识,阅读知识结构图.【设计意图】让学生明确本章知识结构、知道课程标准对本章学习的要求;还应该有自己的认识;学习章知识总结梳理的方法.重视注意部分.【媒体应用】展示知识结构图.活动3 基础训练,辨析概念(6分钟).一、选择题CBEAD1、如图:若ABEDEC,且BD=5,AE=2,则CE的长为( ) A.2 B.3 C.5 D.2.5 2、如上图:若ABCDCB,则ACB等于( ) A.ABC B.BCD C.ABD D.DBCCBEAD 二、填空题3、已知:如图,ABDC, 再添一个条件证明ABCDCB,这个条件可以是 .【方法指引】 证明两个三角形全等的基本思路: (1)已知两边(2)已知一边一角(3)已知两角(注意:判定两个三角形全等必须具备的三个条件中“边”是不可缺少的,角角角(AAA)和边边角(SSA)不能作为判定两个三角形全等的方法。)【教师活动】1.分析解题的思路及用到的知识点.组织学生交流和点评,得出正确答案.2. 引导学生归纳总结证明两个三角形全等的基本思路.【学生活动】1.同桌讨论,尝试完成练习.2.参与展示交流及点评.3. 在教师的引导下完成学案上的空格.【设计意图】通过选择和填空两组基础训练题进一步巩固全等三角形的概念、性质、判定的运用.同时进行查缺,发现学生障碍之处.【媒体应用】使用多媒体出示题目,最后给出参考答案.活动4 变式开放,灵活运用(7分钟).CBEAD4、已知:如图,ABDC,AD,你能证明哪两个三角形全等?若AD90,你能证明哪两个三角形全等?【教师活动】1.提出要求:说说你是怎么分析的.2.在学生分析的基础上,给出点评.【学生活动】1参与小组讨论(前后桌四人一组).2学生倾听,学生小组互评.【设计意图】通过此题训练学生找全等三角形和证明三角形全等的方法.【媒体应用】使用多媒体出示题目,最后给出证明过程.活动5 课堂强化,提升能力(18分钟).CBEAD 5、已知:如图,ABAC,ADAE求证:BDCE.归纳:找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等. 三角形全等是证明线段相等、角相等最基本、最常用的方法; 、 、 是题目中隐含的对应边、对应角.活动6小结归纳,提高认识(3分钟)1、经过本节课的学习你有什么收获?2、概括:(1)利用全等三角形可以得到线段相等和角相等,在以后的学习中它是很好的工具.(2)当要证明线段相等或角相等时常常做辅助线构造全等三角形来解决.(3)利用SAS时角一定是夹角,不能用SSA证明全等.活动7 推荐作业,补充升华(2分钟)必做题:1、补全活动5中第5题的证明过程(至少5种方法).CBEAD2.已知:如图,ABDC,ACDB求证:(1) AD;(2)EBEC;(3)EAED.选做题:如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使ABEACD,可以添加的一个条件是 . (请提供尽可能多的方法,并说明理由)【教师活动】1.引导学生分析证明.给出证明过程.2.归纳找全等三角形的方法【学生活动】1.小组讨论尝试完成题目(分成四个大组).2.学生倾听老师或学生讲解.3.归纳得出找全等三角形的方法.【教师活动】引导学生归纳小结.【学生活动】学生自己小结.【教师活动】1、操作多媒体安排作业2、鼓励学生勇于挑战【学生活动】记录作业【设计意图】渗透全等三角形证明方法,让学生进行一题多解,获得成功的喜悦.【媒体应用】多媒体出示问题,呈现讲解要点及证明过程,最后给出参考答案【设计意图】通过归纳小结加深对知识的学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论